Metamath Proof Explorer


Theorem hsphoidmvle2

Description: The dimensional volume of a half-open interval intersected with a two half-spaces. Used in the last inequality of step (c) of Lemma 115B of Fremlin1 p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses hsphoidmvle2.l L=xFinax,bxifx=0kxvolakbk
hsphoidmvle2.x φXFin
hsphoidmvle2.z φZXY
hsphoidmvle2.y X=YZ
hsphoidmvle2.c φC
hsphoidmvle2.d φD
hsphoidmvle2.e φCD
hsphoidmvle2.h H=xcXjXifjYcjifcjxcjx
hsphoidmvle2.a φA:X
hsphoidmvle2.b φB:X
Assertion hsphoidmvle2 φALXHCBALXHDB

Proof

Step Hyp Ref Expression
1 hsphoidmvle2.l L=xFinax,bxifx=0kxvolakbk
2 hsphoidmvle2.x φXFin
3 hsphoidmvle2.z φZXY
4 hsphoidmvle2.y X=YZ
5 hsphoidmvle2.c φC
6 hsphoidmvle2.d φD
7 hsphoidmvle2.e φCD
8 hsphoidmvle2.h H=xcXjXifjYcjifcjxcjx
9 hsphoidmvle2.a φA:X
10 hsphoidmvle2.b φB:X
11 3 eldifad φZX
12 9 11 ffvelcdmd φAZ
13 10 11 ffvelcdmd φBZ
14 13 5 ifcld φifBZCBZC
15 volicore AZifBZCBZCvolAZifBZCBZC
16 12 14 15 syl2anc φvolAZifBZCBZC
17 13 6 ifcld φifBZDBZD
18 volicore AZifBZDBZDvolAZifBZDBZD
19 12 17 18 syl2anc φvolAZifBZDBZD
20 difssd φXZX
21 ssfi XFinXZXXZFin
22 2 20 21 syl2anc φXZFin
23 eldifi kXZkX
24 23 adantl φkXZkX
25 9 ffvelcdmda φkXAk
26 10 ffvelcdmda φkXBk
27 volicore AkBkvolAkBk
28 25 26 27 syl2anc φkXvolAkBk
29 24 28 syldan φkXZvolAkBk
30 22 29 fprodrecl φkXZvolAkBk
31 nfv kφ
32 24 25 syldan φkXZAk
33 24 26 syldan φkXZBk
34 33 rexrd φkXZBk*
35 icombl AkBk*AkBkdomvol
36 32 34 35 syl2anc φkXZAkBkdomvol
37 volge0 AkBkdomvol0volAkBk
38 36 37 syl φkXZ0volAkBk
39 31 22 29 38 fprodge0 φ0kXZvolAkBk
40 14 rexrd φifBZCBZC*
41 icombl AZifBZCBZC*AZifBZCBZCdomvol
42 12 40 41 syl2anc φAZifBZCBZCdomvol
43 17 rexrd φifBZDBZD*
44 icombl AZifBZDBZD*AZifBZDBZDdomvol
45 12 43 44 syl2anc φAZifBZDBZDdomvol
46 12 rexrd φAZ*
47 12 leidd φAZAZ
48 13 leidd φBZBZ
49 48 adantr φBZCBZBZ
50 iftrue BZCifBZCBZC=BZ
51 50 adantl φBZCifBZCBZC=BZ
52 13 adantr φBZCBZ
53 5 adantr φBZCC
54 6 adantr φBZCD
55 simpr φBZCBZC
56 7 adantr φBZCCD
57 52 53 54 55 56 letrd φBZCBZD
58 57 iftrued φBZCifBZDBZD=BZ
59 51 58 breq12d φBZCifBZCBZCifBZDBZDBZBZ
60 49 59 mpbird φBZCifBZCBZCifBZDBZD
61 simpl φ¬BZCφ
62 simpr φ¬BZC¬BZC
63 61 5 syl φ¬BZCC
64 61 13 syl φ¬BZCBZ
65 63 64 ltnled φ¬BZCC<BZ¬BZC
66 62 65 mpbird φ¬BZCC<BZ
67 5 adantr φC<BZC
68 13 adantr φC<BZBZ
69 simpr φC<BZC<BZ
70 67 68 69 ltled φC<BZCBZ
71 70 adantr φC<BZBZDCBZ
72 iftrue BZDifBZDBZD=BZ
73 72 eqcomd BZDBZ=ifBZDBZD
74 73 adantl φC<BZBZDBZ=ifBZDBZD
75 71 74 breqtrd φC<BZBZDCifBZDBZD
76 7 ad2antrr φC<BZ¬BZDCD
77 iffalse ¬BZDifBZDBZD=D
78 77 eqcomd ¬BZDD=ifBZDBZD
79 78 adantl φC<BZ¬BZDD=ifBZDBZD
80 76 79 breqtrd φC<BZ¬BZDCifBZDBZD
81 75 80 pm2.61dan φC<BZCifBZDBZD
82 61 66 81 syl2anc φ¬BZCCifBZDBZD
83 iffalse ¬BZCifBZCBZC=C
84 83 adantl φ¬BZCifBZCBZC=C
85 84 breq1d φ¬BZCifBZCBZCifBZDBZDCifBZDBZD
86 82 85 mpbird φ¬BZCifBZCBZCifBZDBZD
87 60 86 pm2.61dan φifBZCBZCifBZDBZD
88 icossico AZ*ifBZDBZD*AZAZifBZCBZCifBZDBZDAZifBZCBZCAZifBZDBZD
89 46 43 47 87 88 syl22anc φAZifBZCBZCAZifBZDBZD
90 volss AZifBZCBZCdomvolAZifBZDBZDdomvolAZifBZCBZCAZifBZDBZDvolAZifBZCBZCvolAZifBZDBZD
91 42 45 89 90 syl3anc φvolAZifBZCBZCvolAZifBZDBZD
92 16 19 30 39 91 lemul1ad φvolAZifBZCBZCkXZvolAkBkvolAZifBZDBZDkXZvolAkBk
93 11 ne0d φX
94 8 5 2 10 hsphoif φHCB:X
95 1 2 93 9 94 hoidmvn0val φALXHCB=kXvolAkHCBk
96 94 ffvelcdmda φkXHCBk
97 volicore AkHCBkvolAkHCBk
98 25 96 97 syl2anc φkXvolAkHCBk
99 98 recnd φkXvolAkHCBk
100 fveq2 k=ZAk=AZ
101 fveq2 k=ZHCBk=HCBZ
102 100 101 oveq12d k=ZAkHCBk=AZHCBZ
103 102 fveq2d k=ZvolAkHCBk=volAZHCBZ
104 103 adantl φk=ZvolAkHCBk=volAZHCBZ
105 8 5 2 10 11 hsphoival φHCBZ=ifZYBZifBZCBZC
106 3 eldifbd φ¬ZY
107 106 iffalsed φifZYBZifBZCBZC=ifBZCBZC
108 105 107 eqtrd φHCBZ=ifBZCBZC
109 108 oveq2d φAZHCBZ=AZifBZCBZC
110 109 fveq2d φvolAZHCBZ=volAZifBZCBZC
111 110 adantr φk=ZvolAZHCBZ=volAZifBZCBZC
112 104 111 eqtrd φk=ZvolAkHCBk=volAZifBZCBZC
113 2 99 11 112 fprodsplit1 φkXvolAkHCBk=volAZifBZCBZCkXZvolAkHCBk
114 5 adantr φkXZC
115 2 adantr φkXZXFin
116 10 adantr φkXZB:X
117 8 114 115 116 24 hsphoival φkXZHCBk=ifkYBkifBkCBkC
118 23 4 eleqtrdi kXZkYZ
119 eldifn kXZ¬kZ
120 elunnel2 kYZ¬kZkY
121 118 119 120 syl2anc kXZkY
122 121 adantl φkXZkY
123 122 iftrued φkXZifkYBkifBkCBkC=Bk
124 117 123 eqtrd φkXZHCBk=Bk
125 124 oveq2d φkXZAkHCBk=AkBk
126 125 fveq2d φkXZvolAkHCBk=volAkBk
127 126 prodeq2dv φkXZvolAkHCBk=kXZvolAkBk
128 127 oveq2d φvolAZifBZCBZCkXZvolAkHCBk=volAZifBZCBZCkXZvolAkBk
129 95 113 128 3eqtrd φALXHCB=volAZifBZCBZCkXZvolAkBk
130 8 6 2 10 hsphoif φHDB:X
131 1 2 93 9 130 hoidmvn0val φALXHDB=kXvolAkHDBk
132 130 ffvelcdmda φkXHDBk
133 volicore AkHDBkvolAkHDBk
134 25 132 133 syl2anc φkXvolAkHDBk
135 134 recnd φkXvolAkHDBk
136 fveq2 k=ZHDBk=HDBZ
137 100 136 oveq12d k=ZAkHDBk=AZHDBZ
138 137 fveq2d k=ZvolAkHDBk=volAZHDBZ
139 138 adantl φk=ZvolAkHDBk=volAZHDBZ
140 2 135 11 139 fprodsplit1 φkXvolAkHDBk=volAZHDBZkXZvolAkHDBk
141 8 6 2 10 11 hsphoival φHDBZ=ifZYBZifBZDBZD
142 106 iffalsed φifZYBZifBZDBZD=ifBZDBZD
143 141 142 eqtrd φHDBZ=ifBZDBZD
144 143 oveq2d φAZHDBZ=AZifBZDBZD
145 144 fveq2d φvolAZHDBZ=volAZifBZDBZD
146 6 adantr φkXZD
147 8 146 115 116 24 hsphoival φkXZHDBk=ifkYBkifBkDBkD
148 122 iftrued φkXZifkYBkifBkDBkD=Bk
149 147 148 eqtrd φkXZHDBk=Bk
150 149 oveq2d φkXZAkHDBk=AkBk
151 150 fveq2d φkXZvolAkHDBk=volAkBk
152 151 prodeq2dv φkXZvolAkHDBk=kXZvolAkBk
153 145 152 oveq12d φvolAZHDBZkXZvolAkHDBk=volAZifBZDBZDkXZvolAkBk
154 131 140 153 3eqtrd φALXHDB=volAZifBZDBZDkXZvolAkBk
155 129 154 breq12d φALXHCBALXHDBvolAZifBZCBZCkXZvolAkBkvolAZifBZDBZDkXZvolAkBk
156 92 155 mpbird φALXHCBALXHDB