Metamath Proof Explorer


Theorem ig1pdvds

Description: The monic generator of an ideal divides all elements of the ideal. (Contributed by Stefan O'Rear, 29-Mar-2015) (Proof shortened by AV, 25-Sep-2020)

Ref Expression
Hypotheses ig1pval.p P = Poly 1 R
ig1pval.g G = idlGen 1p R
ig1pcl.u U = LIdeal P
ig1pdvds.d ˙ = r P
Assertion ig1pdvds R DivRing I U X I G I ˙ X

Proof

Step Hyp Ref Expression
1 ig1pval.p P = Poly 1 R
2 ig1pval.g G = idlGen 1p R
3 ig1pcl.u U = LIdeal P
4 ig1pdvds.d ˙ = r P
5 drngring R DivRing R Ring
6 1 ply1ring R Ring P Ring
7 5 6 syl R DivRing P Ring
8 7 3ad2ant1 R DivRing I U X I P Ring
9 eqid Base P = Base P
10 9 3 lidlss I U I Base P
11 10 3ad2ant2 R DivRing I U X I I Base P
12 1 2 3 ig1pcl R DivRing I U G I I
13 12 3adant3 R DivRing I U X I G I I
14 11 13 sseldd R DivRing I U X I G I Base P
15 eqid 0 P = 0 P
16 9 4 15 dvdsr01 P Ring G I Base P G I ˙ 0 P
17 8 14 16 syl2anc R DivRing I U X I G I ˙ 0 P
18 17 adantr R DivRing I U X I I = 0 P G I ˙ 0 P
19 eleq2 I = 0 P X I X 0 P
20 19 biimpac X I I = 0 P X 0 P
21 20 3ad2antl3 R DivRing I U X I I = 0 P X 0 P
22 elsni X 0 P X = 0 P
23 21 22 syl R DivRing I U X I I = 0 P X = 0 P
24 18 23 breqtrrd R DivRing I U X I I = 0 P G I ˙ X
25 simpl1 R DivRing I U X I I 0 P R DivRing
26 25 5 syl R DivRing I U X I I 0 P R Ring
27 simpl2 R DivRing I U X I I 0 P I U
28 27 10 syl R DivRing I U X I I 0 P I Base P
29 simpl3 R DivRing I U X I I 0 P X I
30 28 29 sseldd R DivRing I U X I I 0 P X Base P
31 simpr R DivRing I U X I I 0 P I 0 P
32 eqid deg 1 R = deg 1 R
33 eqid Monic 1p R = Monic 1p R
34 1 2 15 3 32 33 ig1pval3 R DivRing I U I 0 P G I I G I Monic 1p R deg 1 R G I = sup deg 1 R I 0 P <
35 25 27 31 34 syl3anc R DivRing I U X I I 0 P G I I G I Monic 1p R deg 1 R G I = sup deg 1 R I 0 P <
36 35 simp2d R DivRing I U X I I 0 P G I Monic 1p R
37 eqid Unic 1p R = Unic 1p R
38 37 33 mon1puc1p R Ring G I Monic 1p R G I Unic 1p R
39 26 36 38 syl2anc R DivRing I U X I I 0 P G I Unic 1p R
40 eqid rem 1p R = rem 1p R
41 40 1 9 37 32 r1pdeglt R Ring X Base P G I Unic 1p R deg 1 R X rem 1p R G I < deg 1 R G I
42 26 30 39 41 syl3anc R DivRing I U X I I 0 P deg 1 R X rem 1p R G I < deg 1 R G I
43 35 simp3d R DivRing I U X I I 0 P deg 1 R G I = sup deg 1 R I 0 P <
44 42 43 breqtrd R DivRing I U X I I 0 P deg 1 R X rem 1p R G I < sup deg 1 R I 0 P <
45 32 1 9 deg1xrf deg 1 R : Base P *
46 35 simp1d R DivRing I U X I I 0 P G I I
47 28 46 sseldd R DivRing I U X I I 0 P G I Base P
48 eqid quot 1p R = quot 1p R
49 eqid P = P
50 eqid - P = - P
51 40 1 9 48 49 50 r1pval X Base P G I Base P X rem 1p R G I = X - P X quot 1p R G I P G I
52 30 47 51 syl2anc R DivRing I U X I I 0 P X rem 1p R G I = X - P X quot 1p R G I P G I
53 26 6 syl R DivRing I U X I I 0 P P Ring
54 48 1 9 37 q1pcl R Ring X Base P G I Unic 1p R X quot 1p R G I Base P
55 26 30 39 54 syl3anc R DivRing I U X I I 0 P X quot 1p R G I Base P
56 3 9 49 lidlmcl P Ring I U X quot 1p R G I Base P G I I X quot 1p R G I P G I I
57 53 27 55 46 56 syl22anc R DivRing I U X I I 0 P X quot 1p R G I P G I I
58 3 50 lidlsubcl P Ring I U X I X quot 1p R G I P G I I X - P X quot 1p R G I P G I I
59 53 27 29 57 58 syl22anc R DivRing I U X I I 0 P X - P X quot 1p R G I P G I I
60 52 59 eqeltrd R DivRing I U X I I 0 P X rem 1p R G I I
61 28 60 sseldd R DivRing I U X I I 0 P X rem 1p R G I Base P
62 ffvelrn deg 1 R : Base P * X rem 1p R G I Base P deg 1 R X rem 1p R G I *
63 45 61 62 sylancr R DivRing I U X I I 0 P deg 1 R X rem 1p R G I *
64 28 ssdifd R DivRing I U X I I 0 P I 0 P Base P 0 P
65 imass2 I 0 P Base P 0 P deg 1 R I 0 P deg 1 R Base P 0 P
66 64 65 syl R DivRing I U X I I 0 P deg 1 R I 0 P deg 1 R Base P 0 P
67 32 1 15 9 deg1n0ima R Ring deg 1 R Base P 0 P 0
68 26 67 syl R DivRing I U X I I 0 P deg 1 R Base P 0 P 0
69 nn0uz 0 = 0
70 68 69 sseqtrdi R DivRing I U X I I 0 P deg 1 R Base P 0 P 0
71 66 70 sstrd R DivRing I U X I I 0 P deg 1 R I 0 P 0
72 uzssz 0
73 zssre
74 ressxr *
75 73 74 sstri *
76 72 75 sstri 0 *
77 71 76 sstrdi R DivRing I U X I I 0 P deg 1 R I 0 P *
78 3 15 lidl0cl P Ring I U 0 P I
79 53 27 78 syl2anc R DivRing I U X I I 0 P 0 P I
80 79 snssd R DivRing I U X I I 0 P 0 P I
81 31 necomd R DivRing I U X I I 0 P 0 P I
82 pssdifn0 0 P I 0 P I I 0 P
83 80 81 82 syl2anc R DivRing I U X I I 0 P I 0 P
84 ffn deg 1 R : Base P * deg 1 R Fn Base P
85 45 84 ax-mp deg 1 R Fn Base P
86 28 ssdifssd R DivRing I U X I I 0 P I 0 P Base P
87 fnimaeq0 deg 1 R Fn Base P I 0 P Base P deg 1 R I 0 P = I 0 P =
88 85 86 87 sylancr R DivRing I U X I I 0 P deg 1 R I 0 P = I 0 P =
89 88 necon3bid R DivRing I U X I I 0 P deg 1 R I 0 P I 0 P
90 83 89 mpbird R DivRing I U X I I 0 P deg 1 R I 0 P
91 infssuzcl deg 1 R I 0 P 0 deg 1 R I 0 P sup deg 1 R I 0 P < deg 1 R I 0 P
92 71 90 91 syl2anc R DivRing I U X I I 0 P sup deg 1 R I 0 P < deg 1 R I 0 P
93 77 92 sseldd R DivRing I U X I I 0 P sup deg 1 R I 0 P < *
94 xrltnle deg 1 R X rem 1p R G I * sup deg 1 R I 0 P < * deg 1 R X rem 1p R G I < sup deg 1 R I 0 P < ¬ sup deg 1 R I 0 P < deg 1 R X rem 1p R G I
95 63 93 94 syl2anc R DivRing I U X I I 0 P deg 1 R X rem 1p R G I < sup deg 1 R I 0 P < ¬ sup deg 1 R I 0 P < deg 1 R X rem 1p R G I
96 44 95 mpbid R DivRing I U X I I 0 P ¬ sup deg 1 R I 0 P < deg 1 R X rem 1p R G I
97 71 adantr R DivRing I U X I I 0 P X rem 1p R G I 0 P deg 1 R I 0 P 0
98 60 adantr R DivRing I U X I I 0 P X rem 1p R G I 0 P X rem 1p R G I I
99 simpr R DivRing I U X I I 0 P X rem 1p R G I 0 P X rem 1p R G I 0 P
100 eldifsn X rem 1p R G I I 0 P X rem 1p R G I I X rem 1p R G I 0 P
101 98 99 100 sylanbrc R DivRing I U X I I 0 P X rem 1p R G I 0 P X rem 1p R G I I 0 P
102 fnfvima deg 1 R Fn Base P I 0 P Base P X rem 1p R G I I 0 P deg 1 R X rem 1p R G I deg 1 R I 0 P
103 85 86 101 102 mp3an2ani R DivRing I U X I I 0 P X rem 1p R G I 0 P deg 1 R X rem 1p R G I deg 1 R I 0 P
104 infssuzle deg 1 R I 0 P 0 deg 1 R X rem 1p R G I deg 1 R I 0 P sup deg 1 R I 0 P < deg 1 R X rem 1p R G I
105 97 103 104 syl2anc R DivRing I U X I I 0 P X rem 1p R G I 0 P sup deg 1 R I 0 P < deg 1 R X rem 1p R G I
106 105 ex R DivRing I U X I I 0 P X rem 1p R G I 0 P sup deg 1 R I 0 P < deg 1 R X rem 1p R G I
107 106 necon1bd R DivRing I U X I I 0 P ¬ sup deg 1 R I 0 P < deg 1 R X rem 1p R G I X rem 1p R G I = 0 P
108 96 107 mpd R DivRing I U X I I 0 P X rem 1p R G I = 0 P
109 1 4 9 37 15 40 dvdsr1p R Ring X Base P G I Unic 1p R G I ˙ X X rem 1p R G I = 0 P
110 26 30 39 109 syl3anc R DivRing I U X I I 0 P G I ˙ X X rem 1p R G I = 0 P
111 108 110 mpbird R DivRing I U X I I 0 P G I ˙ X
112 24 111 pm2.61dane R DivRing I U X I G I ˙ X