Metamath Proof Explorer


Theorem ig1pdvds

Description: The monic generator of an ideal divides all elements of the ideal. (Contributed by Stefan O'Rear, 29-Mar-2015) (Proof shortened by AV, 25-Sep-2020)

Ref Expression
Hypotheses ig1pval.p P=Poly1R
ig1pval.g G=idlGen1pR
ig1pcl.u U=LIdealP
ig1pdvds.d ˙=rP
Assertion ig1pdvds RDivRingIUXIGI˙X

Proof

Step Hyp Ref Expression
1 ig1pval.p P=Poly1R
2 ig1pval.g G=idlGen1pR
3 ig1pcl.u U=LIdealP
4 ig1pdvds.d ˙=rP
5 drngring RDivRingRRing
6 1 ply1ring RRingPRing
7 5 6 syl RDivRingPRing
8 7 3ad2ant1 RDivRingIUXIPRing
9 eqid BaseP=BaseP
10 9 3 lidlss IUIBaseP
11 10 3ad2ant2 RDivRingIUXIIBaseP
12 1 2 3 ig1pcl RDivRingIUGII
13 12 3adant3 RDivRingIUXIGII
14 11 13 sseldd RDivRingIUXIGIBaseP
15 eqid 0P=0P
16 9 4 15 dvdsr01 PRingGIBasePGI˙0P
17 8 14 16 syl2anc RDivRingIUXIGI˙0P
18 17 adantr RDivRingIUXII=0PGI˙0P
19 eleq2 I=0PXIX0P
20 19 biimpac XII=0PX0P
21 20 3ad2antl3 RDivRingIUXII=0PX0P
22 elsni X0PX=0P
23 21 22 syl RDivRingIUXII=0PX=0P
24 18 23 breqtrrd RDivRingIUXII=0PGI˙X
25 simpl1 RDivRingIUXII0PRDivRing
26 25 5 syl RDivRingIUXII0PRRing
27 simpl2 RDivRingIUXII0PIU
28 27 10 syl RDivRingIUXII0PIBaseP
29 simpl3 RDivRingIUXII0PXI
30 28 29 sseldd RDivRingIUXII0PXBaseP
31 simpr RDivRingIUXII0PI0P
32 eqid deg1R=deg1R
33 eqid Monic1pR=Monic1pR
34 1 2 15 3 32 33 ig1pval3 RDivRingIUI0PGIIGIMonic1pRdeg1RGI=supdeg1RI0P<
35 25 27 31 34 syl3anc RDivRingIUXII0PGIIGIMonic1pRdeg1RGI=supdeg1RI0P<
36 35 simp2d RDivRingIUXII0PGIMonic1pR
37 eqid Unic1pR=Unic1pR
38 37 33 mon1puc1p RRingGIMonic1pRGIUnic1pR
39 26 36 38 syl2anc RDivRingIUXII0PGIUnic1pR
40 eqid rem1pR=rem1pR
41 40 1 9 37 32 r1pdeglt RRingXBasePGIUnic1pRdeg1RXrem1pRGI<deg1RGI
42 26 30 39 41 syl3anc RDivRingIUXII0Pdeg1RXrem1pRGI<deg1RGI
43 35 simp3d RDivRingIUXII0Pdeg1RGI=supdeg1RI0P<
44 42 43 breqtrd RDivRingIUXII0Pdeg1RXrem1pRGI<supdeg1RI0P<
45 32 1 9 deg1xrf deg1R:BaseP*
46 35 simp1d RDivRingIUXII0PGII
47 28 46 sseldd RDivRingIUXII0PGIBaseP
48 eqid quot1pR=quot1pR
49 eqid P=P
50 eqid -P=-P
51 40 1 9 48 49 50 r1pval XBasePGIBasePXrem1pRGI=X-PXquot1pRGIPGI
52 30 47 51 syl2anc RDivRingIUXII0PXrem1pRGI=X-PXquot1pRGIPGI
53 26 6 syl RDivRingIUXII0PPRing
54 48 1 9 37 q1pcl RRingXBasePGIUnic1pRXquot1pRGIBaseP
55 26 30 39 54 syl3anc RDivRingIUXII0PXquot1pRGIBaseP
56 3 9 49 lidlmcl PRingIUXquot1pRGIBasePGIIXquot1pRGIPGII
57 53 27 55 46 56 syl22anc RDivRingIUXII0PXquot1pRGIPGII
58 3 50 lidlsubcl PRingIUXIXquot1pRGIPGIIX-PXquot1pRGIPGII
59 53 27 29 57 58 syl22anc RDivRingIUXII0PX-PXquot1pRGIPGII
60 52 59 eqeltrd RDivRingIUXII0PXrem1pRGII
61 28 60 sseldd RDivRingIUXII0PXrem1pRGIBaseP
62 ffvelcdm deg1R:BaseP*Xrem1pRGIBasePdeg1RXrem1pRGI*
63 45 61 62 sylancr RDivRingIUXII0Pdeg1RXrem1pRGI*
64 28 ssdifd RDivRingIUXII0PI0PBaseP0P
65 imass2 I0PBaseP0Pdeg1RI0Pdeg1RBaseP0P
66 64 65 syl RDivRingIUXII0Pdeg1RI0Pdeg1RBaseP0P
67 32 1 15 9 deg1n0ima RRingdeg1RBaseP0P0
68 26 67 syl RDivRingIUXII0Pdeg1RBaseP0P0
69 nn0uz 0=0
70 68 69 sseqtrdi RDivRingIUXII0Pdeg1RBaseP0P0
71 66 70 sstrd RDivRingIUXII0Pdeg1RI0P0
72 uzssz 0
73 zssre
74 ressxr *
75 73 74 sstri *
76 72 75 sstri 0*
77 71 76 sstrdi RDivRingIUXII0Pdeg1RI0P*
78 3 15 lidl0cl PRingIU0PI
79 53 27 78 syl2anc RDivRingIUXII0P0PI
80 79 snssd RDivRingIUXII0P0PI
81 31 necomd RDivRingIUXII0P0PI
82 pssdifn0 0PI0PII0P
83 80 81 82 syl2anc RDivRingIUXII0PI0P
84 ffn deg1R:BaseP*deg1RFnBaseP
85 45 84 ax-mp deg1RFnBaseP
86 28 ssdifssd RDivRingIUXII0PI0PBaseP
87 fnimaeq0 deg1RFnBasePI0PBasePdeg1RI0P=I0P=
88 85 86 87 sylancr RDivRingIUXII0Pdeg1RI0P=I0P=
89 88 necon3bid RDivRingIUXII0Pdeg1RI0PI0P
90 83 89 mpbird RDivRingIUXII0Pdeg1RI0P
91 infssuzcl deg1RI0P0deg1RI0Psupdeg1RI0P<deg1RI0P
92 71 90 91 syl2anc RDivRingIUXII0Psupdeg1RI0P<deg1RI0P
93 77 92 sseldd RDivRingIUXII0Psupdeg1RI0P<*
94 xrltnle deg1RXrem1pRGI*supdeg1RI0P<*deg1RXrem1pRGI<supdeg1RI0P<¬supdeg1RI0P<deg1RXrem1pRGI
95 63 93 94 syl2anc RDivRingIUXII0Pdeg1RXrem1pRGI<supdeg1RI0P<¬supdeg1RI0P<deg1RXrem1pRGI
96 44 95 mpbid RDivRingIUXII0P¬supdeg1RI0P<deg1RXrem1pRGI
97 71 adantr RDivRingIUXII0PXrem1pRGI0Pdeg1RI0P0
98 60 adantr RDivRingIUXII0PXrem1pRGI0PXrem1pRGII
99 simpr RDivRingIUXII0PXrem1pRGI0PXrem1pRGI0P
100 eldifsn Xrem1pRGII0PXrem1pRGIIXrem1pRGI0P
101 98 99 100 sylanbrc RDivRingIUXII0PXrem1pRGI0PXrem1pRGII0P
102 fnfvima deg1RFnBasePI0PBasePXrem1pRGII0Pdeg1RXrem1pRGIdeg1RI0P
103 85 86 101 102 mp3an2ani RDivRingIUXII0PXrem1pRGI0Pdeg1RXrem1pRGIdeg1RI0P
104 infssuzle deg1RI0P0deg1RXrem1pRGIdeg1RI0Psupdeg1RI0P<deg1RXrem1pRGI
105 97 103 104 syl2anc RDivRingIUXII0PXrem1pRGI0Psupdeg1RI0P<deg1RXrem1pRGI
106 105 ex RDivRingIUXII0PXrem1pRGI0Psupdeg1RI0P<deg1RXrem1pRGI
107 106 necon1bd RDivRingIUXII0P¬supdeg1RI0P<deg1RXrem1pRGIXrem1pRGI=0P
108 96 107 mpd RDivRingIUXII0PXrem1pRGI=0P
109 1 4 9 37 15 40 dvdsr1p RRingXBasePGIUnic1pRGI˙XXrem1pRGI=0P
110 26 30 39 109 syl3anc RDivRingIUXII0PGI˙XXrem1pRGI=0P
111 108 110 mpbird RDivRingIUXII0PGI˙X
112 24 111 pm2.61dane RDivRingIUXIGI˙X