Metamath Proof Explorer


Theorem irngnminplynz

Description: Integral elements have nonzero minimal polynomials. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses irngnminplynz.z Z=0Poly1E
irngnminplynz.e φEField
irngnminplynz.f φFSubDRingE
irngnminplynz.m No typesetting found for |- M = ( E minPoly F ) with typecode |-
irngnminplynz.a φAEIntgRingF
Assertion irngnminplynz φMAZ

Proof

Step Hyp Ref Expression
1 irngnminplynz.z Z=0Poly1E
2 irngnminplynz.e φEField
3 irngnminplynz.f φFSubDRingE
4 irngnminplynz.m Could not format M = ( E minPoly F ) : No typesetting found for |- M = ( E minPoly F ) with typecode |-
5 irngnminplynz.a φAEIntgRingF
6 sdrgsubrg FSubDRingEFSubRingE
7 3 6 syl φFSubRingE
8 eqid E𝑠F=E𝑠F
9 8 subrgring FSubRingEE𝑠FRing
10 7 9 syl φE𝑠FRing
11 eqid Poly1E𝑠F=Poly1E𝑠F
12 11 ply1ring E𝑠FRingPoly1E𝑠FRing
13 10 12 syl φPoly1E𝑠FRing
14 eqid EevalSub1F=EevalSub1F
15 eqid BaseE=BaseE
16 2 fldcrngd φECRing
17 eqid 0E=0E
18 14 8 15 17 16 7 irngssv φEIntgRingFBaseE
19 18 5 sseldd φABaseE
20 eqid qdomEevalSub1F|EevalSub1FqA=0E=qdomEevalSub1F|EevalSub1FqA=0E
21 14 11 15 16 7 19 17 20 ply1annidl φqdomEevalSub1F|EevalSub1FqA=0ELIdealPoly1E𝑠F
22 eqid BasePoly1E𝑠F=BasePoly1E𝑠F
23 eqid LIdealPoly1E𝑠F=LIdealPoly1E𝑠F
24 22 23 lidlss qdomEevalSub1F|EevalSub1FqA=0ELIdealPoly1E𝑠FqdomEevalSub1F|EevalSub1FqA=0EBasePoly1E𝑠F
25 21 24 syl φqdomEevalSub1F|EevalSub1FqA=0EBasePoly1E𝑠F
26 8 sdrgdrng FSubDRingEE𝑠FDivRing
27 3 26 syl φE𝑠FDivRing
28 eqid idlGen1pE𝑠F=idlGen1pE𝑠F
29 11 28 23 ig1pcl E𝑠FDivRingqdomEevalSub1F|EevalSub1FqA=0ELIdealPoly1E𝑠FidlGen1pE𝑠FqdomEevalSub1F|EevalSub1FqA=0EqdomEevalSub1F|EevalSub1FqA=0E
30 27 21 29 syl2anc φidlGen1pE𝑠FqdomEevalSub1F|EevalSub1FqA=0EqdomEevalSub1F|EevalSub1FqA=0E
31 25 30 sseldd φidlGen1pE𝑠FqdomEevalSub1F|EevalSub1FqA=0EBasePoly1E𝑠F
32 eqid RSpanPoly1E𝑠F=RSpanPoly1E𝑠F
33 14 11 15 2 3 19 17 20 32 28 ply1annig1p φqdomEevalSub1F|EevalSub1FqA=0E=RSpanPoly1E𝑠FidlGen1pE𝑠FqdomEevalSub1F|EevalSub1FqA=0E
34 fveq2 q=pEevalSub1Fq=EevalSub1Fp
35 34 fveq1d q=pEevalSub1FqA=EevalSub1FpA
36 35 eqeq1d q=pEevalSub1FqA=0EEevalSub1FpA=0E
37 simplr φpdomEevalSub1FZAEevalSub1Fp-10EpdomEevalSub1FZ
38 37 eldifad φpdomEevalSub1FZAEevalSub1Fp-10EpdomEevalSub1F
39 16 ad2antrr φpdomEevalSub1FZAEevalSub1Fp-10EECRing
40 7 ad2antrr φpdomEevalSub1FZAEevalSub1Fp-10EFSubRingE
41 14 11 22 16 7 evls1dm φdomEevalSub1F=BasePoly1E𝑠F
42 41 ad2antrr φpdomEevalSub1FZAEevalSub1Fp-10EdomEevalSub1F=BasePoly1E𝑠F
43 38 42 eleqtrd φpdomEevalSub1FZAEevalSub1Fp-10EpBasePoly1E𝑠F
44 14 11 22 39 40 15 43 evls1fvf φpdomEevalSub1FZAEevalSub1Fp-10EEevalSub1Fp:BaseEBaseE
45 44 ffnd φpdomEevalSub1FZAEevalSub1Fp-10EEevalSub1FpFnBaseE
46 elpreima EevalSub1FpFnBaseEAEevalSub1Fp-10EABaseEEevalSub1FpA0E
47 46 simplbda EevalSub1FpFnBaseEAEevalSub1Fp-10EEevalSub1FpA0E
48 45 47 sylancom φpdomEevalSub1FZAEevalSub1Fp-10EEevalSub1FpA0E
49 elsni EevalSub1FpA0EEevalSub1FpA=0E
50 48 49 syl φpdomEevalSub1FZAEevalSub1Fp-10EEevalSub1FpA=0E
51 36 38 50 elrabd φpdomEevalSub1FZAEevalSub1Fp-10EpqdomEevalSub1F|EevalSub1FqA=0E
52 eldifsni pdomEevalSub1FZpZ
53 37 52 syl φpdomEevalSub1FZAEevalSub1Fp-10EpZ
54 eqid Poly1E=Poly1E
55 54 8 11 22 7 1 ressply10g φZ=0Poly1E𝑠F
56 55 ad2antrr φpdomEevalSub1FZAEevalSub1Fp-10EZ=0Poly1E𝑠F
57 53 56 neeqtrd φpdomEevalSub1FZAEevalSub1Fp-10Ep0Poly1E𝑠F
58 nelsn p0Poly1E𝑠F¬p0Poly1E𝑠F
59 57 58 syl φpdomEevalSub1FZAEevalSub1Fp-10E¬p0Poly1E𝑠F
60 nelne1 pqdomEevalSub1F|EevalSub1FqA=0E¬p0Poly1E𝑠FqdomEevalSub1F|EevalSub1FqA=0E0Poly1E𝑠F
61 51 59 60 syl2anc φpdomEevalSub1FZAEevalSub1Fp-10EqdomEevalSub1F|EevalSub1FqA=0E0Poly1E𝑠F
62 14 1 17 2 3 irngnzply1 φEIntgRingF=pdomEevalSub1FZEevalSub1Fp-10E
63 5 62 eleqtrd φApdomEevalSub1FZEevalSub1Fp-10E
64 eliun ApdomEevalSub1FZEevalSub1Fp-10EpdomEevalSub1FZAEevalSub1Fp-10E
65 63 64 sylib φpdomEevalSub1FZAEevalSub1Fp-10E
66 61 65 r19.29a φqdomEevalSub1F|EevalSub1FqA=0E0Poly1E𝑠F
67 33 66 eqnetrrd φRSpanPoly1E𝑠FidlGen1pE𝑠FqdomEevalSub1F|EevalSub1FqA=0E0Poly1E𝑠F
68 eqid 0Poly1E𝑠F=0Poly1E𝑠F
69 22 68 32 pidlnzb Poly1E𝑠FRingidlGen1pE𝑠FqdomEevalSub1F|EevalSub1FqA=0EBasePoly1E𝑠FidlGen1pE𝑠FqdomEevalSub1F|EevalSub1FqA=0E0Poly1E𝑠FRSpanPoly1E𝑠FidlGen1pE𝑠FqdomEevalSub1F|EevalSub1FqA=0E0Poly1E𝑠F
70 69 biimpar Poly1E𝑠FRingidlGen1pE𝑠FqdomEevalSub1F|EevalSub1FqA=0EBasePoly1E𝑠FRSpanPoly1E𝑠FidlGen1pE𝑠FqdomEevalSub1F|EevalSub1FqA=0E0Poly1E𝑠FidlGen1pE𝑠FqdomEevalSub1F|EevalSub1FqA=0E0Poly1E𝑠F
71 13 31 67 70 syl21anc φidlGen1pE𝑠FqdomEevalSub1F|EevalSub1FqA=0E0Poly1E𝑠F
72 14 11 15 2 3 19 17 20 32 28 4 minplyval φMA=idlGen1pE𝑠FqdomEevalSub1F|EevalSub1FqA=0E
73 71 72 55 3netr4d φMAZ