Metamath Proof Explorer


Theorem irrapxlem5

Description: Lemma for irrapx1 . Switching to real intervals and fraction syntax. (Contributed by Stefan O'Rear, 13-Sep-2014)

Ref Expression
Assertion irrapxlem5 A+B+x0<xxA<BxA<denomx2

Proof

Step Hyp Ref Expression
1 simpr A+B+B+
2 1 rpreccld A+B+1B+
3 2 rprege0d A+B+1B01B
4 flge0nn0 1B01B1B0
5 nn0p1nn 1B01B+1
6 3 4 5 3syl A+B+1B+1
7 irrapxlem4 A+1B+1abAab<1ifa1B+11B+1a
8 6 7 syldan A+B+abAab<1ifa1B+11B+1a
9 simplrr A+B+abAab<1ifa1B+11B+1ab
10 nnq bb
11 9 10 syl A+B+abAab<1ifa1B+11B+1ab
12 simplrl A+B+abAab<1ifa1B+11B+1aa
13 nnq aa
14 12 13 syl A+B+abAab<1ifa1B+11B+1aa
15 12 nnne0d A+B+abAab<1ifa1B+11B+1aa0
16 qdivcl baa0ba
17 11 14 15 16 syl3anc A+B+abAab<1ifa1B+11B+1aba
18 9 nnrpd A+B+abAab<1ifa1B+11B+1ab+
19 12 nnrpd A+B+abAab<1ifa1B+11B+1aa+
20 18 19 rpdivcld A+B+abAab<1ifa1B+11B+1aba+
21 20 rpgt0d A+B+abAab<1ifa1B+11B+1a0<ba
22 12 nnred A+B+abAab<1ifa1B+11B+1aa
23 12 nnnn0d A+B+abAab<1ifa1B+11B+1aa0
24 23 nn0ge0d A+B+abAab<1ifa1B+11B+1a0a
25 22 24 absidd A+B+abAab<1ifa1B+11B+1aa=a
26 25 eqcomd A+B+abAab<1ifa1B+11B+1aa=a
27 26 oveq1d A+B+abAab<1ifa1B+11B+1aabaA=abaA
28 12 nncnd A+B+abAab<1ifa1B+11B+1aa
29 qre baba
30 17 29 syl A+B+abAab<1ifa1B+11B+1aba
31 rpre A+A
32 31 ad3antrrr A+B+abAab<1ifa1B+11B+1aA
33 30 32 resubcld A+B+abAab<1ifa1B+11B+1abaA
34 33 recnd A+B+abAab<1ifa1B+11B+1abaA
35 28 34 absmuld A+B+abAab<1ifa1B+11B+1aabaA=abaA
36 27 35 eqtr4d A+B+abAab<1ifa1B+11B+1aabaA=abaA
37 qcn baba
38 17 37 syl A+B+abAab<1ifa1B+11B+1aba
39 rpcn A+A
40 39 ad3antrrr A+B+abAab<1ifa1B+11B+1aA
41 28 38 40 subdid A+B+abAab<1ifa1B+11B+1aabaA=abaaA
42 9 nncnd A+B+abAab<1ifa1B+11B+1ab
43 42 28 15 divcan2d A+B+abAab<1ifa1B+11B+1aaba=b
44 28 40 mulcomd A+B+abAab<1ifa1B+11B+1aaA=Aa
45 43 44 oveq12d A+B+abAab<1ifa1B+11B+1aabaaA=bAa
46 41 45 eqtrd A+B+abAab<1ifa1B+11B+1aabaA=bAa
47 46 fveq2d A+B+abAab<1ifa1B+11B+1aabaA=bAa
48 32 22 remulcld A+B+abAab<1ifa1B+11B+1aAa
49 48 recnd A+B+abAab<1ifa1B+11B+1aAa
50 42 49 abssubd A+B+abAab<1ifa1B+11B+1abAa=Aab
51 36 47 50 3eqtrd A+B+abAab<1ifa1B+11B+1aabaA=Aab
52 9 nnred A+B+abAab<1ifa1B+11B+1ab
53 48 52 resubcld A+B+abAab<1ifa1B+11B+1aAab
54 53 recnd A+B+abAab<1ifa1B+11B+1aAab
55 54 abscld A+B+abAab<1ifa1B+11B+1aAab
56 simpllr A+B+abAab<1ifa1B+11B+1aB+
57 56 rprecred A+B+abAab<1ifa1B+11B+1a1B
58 56 rpreccld A+B+abAab<1ifa1B+11B+1a1B+
59 58 rpge0d A+B+abAab<1ifa1B+11B+1a01B
60 57 59 4 syl2anc A+B+abAab<1ifa1B+11B+1a1B0
61 60 5 syl A+B+abAab<1ifa1B+11B+1a1B+1
62 61 nnrpd A+B+abAab<1ifa1B+11B+1a1B+1+
63 62 19 ifcld A+B+abAab<1ifa1B+11B+1aifa1B+11B+1a+
64 63 rprecred A+B+abAab<1ifa1B+11B+1a1ifa1B+11B+1a
65 56 rpred A+B+abAab<1ifa1B+11B+1aB
66 22 65 remulcld A+B+abAab<1ifa1B+11B+1aaB
67 simpr A+B+abAab<1ifa1B+11B+1aAab<1ifa1B+11B+1a
68 58 rprecred A+B+abAab<1ifa1B+11B+1a11B
69 61 nnred A+B+abAab<1ifa1B+11B+1a1B+1
70 69 22 ifcld A+B+abAab<1ifa1B+11B+1aifa1B+11B+1a
71 fllep1 1B1B1B+1
72 57 71 syl A+B+abAab<1ifa1B+11B+1a1B1B+1
73 max2 a1B+11B+1ifa1B+11B+1a
74 22 69 73 syl2anc A+B+abAab<1ifa1B+11B+1a1B+1ifa1B+11B+1a
75 57 69 70 72 74 letrd A+B+abAab<1ifa1B+11B+1a1Bifa1B+11B+1a
76 58 63 lerecd A+B+abAab<1ifa1B+11B+1a1Bifa1B+11B+1a1ifa1B+11B+1a11B
77 75 76 mpbid A+B+abAab<1ifa1B+11B+1a1ifa1B+11B+1a11B
78 65 recnd A+B+abAab<1ifa1B+11B+1aB
79 56 rpne0d A+B+abAab<1ifa1B+11B+1aB0
80 78 79 recrecd A+B+abAab<1ifa1B+11B+1a11B=B
81 78 mullidd A+B+abAab<1ifa1B+11B+1a1B=B
82 80 81 eqtr4d A+B+abAab<1ifa1B+11B+1a11B=1B
83 12 nnge1d A+B+abAab<1ifa1B+11B+1a1a
84 1red A+B+abAab<1ifa1B+11B+1a1
85 84 22 56 lemul1d A+B+abAab<1ifa1B+11B+1a1a1BaB
86 83 85 mpbid A+B+abAab<1ifa1B+11B+1a1BaB
87 82 86 eqbrtrd A+B+abAab<1ifa1B+11B+1a11BaB
88 64 68 66 77 87 letrd A+B+abAab<1ifa1B+11B+1a1ifa1B+11B+1aaB
89 55 64 66 67 88 ltletrd A+B+abAab<1ifa1B+11B+1aAab<aB
90 51 89 eqbrtrd A+B+abAab<1ifa1B+11B+1aabaA<aB
91 34 abscld A+B+abAab<1ifa1B+11B+1abaA
92 12 nngt0d A+B+abAab<1ifa1B+11B+1a0<a
93 ltmul2 baABa0<abaA<BabaA<aB
94 91 65 22 92 93 syl112anc A+B+abAab<1ifa1B+11B+1abaA<BabaA<aB
95 90 94 mpbird A+B+abAab<1ifa1B+11B+1abaA<B
96 22 22 remulcld A+B+abAab<1ifa1B+11B+1aaa
97 22 15 msqgt0d A+B+abAab<1ifa1B+11B+1a0<aa
98 97 gt0ne0d A+B+abAab<1ifa1B+11B+1aaa0
99 96 98 rereccld A+B+abAab<1ifa1B+11B+1a1aa
100 qdencl badenomba
101 17 100 syl A+B+abAab<1ifa1B+11B+1adenomba
102 101 nnred A+B+abAab<1ifa1B+11B+1adenomba
103 102 102 remulcld A+B+abAab<1ifa1B+11B+1adenombadenomba
104 101 nnne0d A+B+abAab<1ifa1B+11B+1adenomba0
105 102 104 msqgt0d A+B+abAab<1ifa1B+11B+1a0<denombadenomba
106 105 gt0ne0d A+B+abAab<1ifa1B+11B+1adenombadenomba0
107 103 106 rereccld A+B+abAab<1ifa1B+11B+1a1denombadenomba
108 22 15 rereccld A+B+abAab<1ifa1B+11B+1a1a
109 max1 a1B+1aifa1B+11B+1a
110 22 69 109 syl2anc A+B+abAab<1ifa1B+11B+1aaifa1B+11B+1a
111 19 63 lerecd A+B+abAab<1ifa1B+11B+1aaifa1B+11B+1a1ifa1B+11B+1a1a
112 110 111 mpbid A+B+abAab<1ifa1B+11B+1a1ifa1B+11B+1a1a
113 55 64 108 67 112 ltletrd A+B+abAab<1ifa1B+11B+1aAab<1a
114 28 28 28 15 15 divdiv1d A+B+abAab<1ifa1B+11B+1aaaa=aaa
115 28 15 dividd A+B+abAab<1ifa1B+11B+1aaa=1
116 115 oveq1d A+B+abAab<1ifa1B+11B+1aaaa=1a
117 96 recnd A+B+abAab<1ifa1B+11B+1aaa
118 28 117 98 divrecd A+B+abAab<1ifa1B+11B+1aaaa=a1aa
119 114 116 118 3eqtr3rd A+B+abAab<1ifa1B+11B+1aa1aa=1a
120 113 51 119 3brtr4d A+B+abAab<1ifa1B+11B+1aabaA<a1aa
121 ltmul2 baA1aaa0<abaA<1aaabaA<a1aa
122 91 99 22 92 121 syl112anc A+B+abAab<1ifa1B+11B+1abaA<1aaabaA<a1aa
123 120 122 mpbird A+B+abAab<1ifa1B+11B+1abaA<1aa
124 9 nnzd A+B+abAab<1ifa1B+11B+1ab
125 divdenle badenombaa
126 124 12 125 syl2anc A+B+abAab<1ifa1B+11B+1adenombaa
127 101 nnnn0d A+B+abAab<1ifa1B+11B+1adenomba0
128 127 nn0ge0d A+B+abAab<1ifa1B+11B+1a0denomba
129 le2msq denomba0denombaa0adenombaadenombadenombaaa
130 102 128 22 24 129 syl22anc A+B+abAab<1ifa1B+11B+1adenombaadenombadenombaaa
131 126 130 mpbid A+B+abAab<1ifa1B+11B+1adenombadenombaaa
132 lerec denombadenomba0<denombadenombaaa0<aadenombadenombaaa1aa1denombadenomba
133 103 105 96 97 132 syl22anc A+B+abAab<1ifa1B+11B+1adenombadenombaaa1aa1denombadenomba
134 131 133 mpbid A+B+abAab<1ifa1B+11B+1a1aa1denombadenomba
135 91 99 107 123 134 ltletrd A+B+abAab<1ifa1B+11B+1abaA<1denombadenomba
136 101 nncnd A+B+abAab<1ifa1B+11B+1adenomba
137 2nn0 20
138 expneg denomba20denomba2=1denomba2
139 136 137 138 sylancl A+B+abAab<1ifa1B+11B+1adenomba2=1denomba2
140 136 sqvald A+B+abAab<1ifa1B+11B+1adenomba2=denombadenomba
141 140 oveq2d A+B+abAab<1ifa1B+11B+1a1denomba2=1denombadenomba
142 139 141 eqtrd A+B+abAab<1ifa1B+11B+1adenomba2=1denombadenomba
143 135 142 breqtrrd A+B+abAab<1ifa1B+11B+1abaA<denomba2
144 breq2 x=ba0<x0<ba
145 fvoveq1 x=baxA=baA
146 145 breq1d x=baxA<BbaA<B
147 fveq2 x=badenomx=denomba
148 147 oveq1d x=badenomx2=denomba2
149 145 148 breq12d x=baxA<denomx2baA<denomba2
150 144 146 149 3anbi123d x=ba0<xxA<BxA<denomx20<babaA<BbaA<denomba2
151 150 rspcev ba0<babaA<BbaA<denomba2x0<xxA<BxA<denomx2
152 17 21 95 143 151 syl13anc A+B+abAab<1ifa1B+11B+1ax0<xxA<BxA<denomx2
153 152 ex A+B+abAab<1ifa1B+11B+1ax0<xxA<BxA<denomx2
154 153 rexlimdvva A+B+abAab<1ifa1B+11B+1ax0<xxA<BxA<denomx2
155 8 154 mpd A+B+x0<xxA<BxA<denomx2