Metamath Proof Explorer


Theorem isarchiofld

Description: Axiom of Archimedes : a characterization of the Archimedean property for ordered fields. (Contributed by Thierry Arnoux, 9-Apr-2018)

Ref Expression
Hypotheses isarchiofld.b B=BaseW
isarchiofld.h H=ℤRHomW
isarchiofld.l <˙=<W
Assertion isarchiofld WoFieldWArchixBnx<˙Hn

Proof

Step Hyp Ref Expression
1 isarchiofld.b B=BaseW
2 isarchiofld.h H=ℤRHomW
3 isarchiofld.l <˙=<W
4 isofld WoFieldWFieldWoRing
5 4 simprbi WoFieldWoRing
6 orngogrp WoRingWoGrp
7 eqid 0W=0W
8 eqid W=W
9 1 7 3 8 isarchi3 WoGrpWArchiyBxB0W<˙ynx<˙nWy
10 5 6 9 3syl WoFieldWArchiyBxB0W<˙ynx<˙nWy
11 orngring WoRingWRing
12 eqid 1W=1W
13 1 12 ringidcl WRing1WB
14 5 11 13 3syl WoField1WB
15 breq2 y=1W0W<˙y0W<˙1W
16 oveq2 y=1WnWy=nW1W
17 16 breq2d y=1Wx<˙nWyx<˙nW1W
18 17 rexbidv y=1Wnx<˙nWynx<˙nW1W
19 15 18 imbi12d y=1W0W<˙ynx<˙nWy0W<˙1Wnx<˙nW1W
20 19 ralbidv y=1WxB0W<˙ynx<˙nWyxB0W<˙1Wnx<˙nW1W
21 20 rspcv 1WByBxB0W<˙ynx<˙nWyxB0W<˙1Wnx<˙nW1W
22 14 21 syl WoFieldyBxB0W<˙ynx<˙nWyxB0W<˙1Wnx<˙nW1W
23 7 12 3 ofldlt1 WoField0W<˙1W
24 pm5.5 0W<˙1W0W<˙1Wnx<˙nW1Wnx<˙nW1W
25 23 24 syl WoField0W<˙1Wnx<˙nW1Wnx<˙nW1W
26 25 ralbidv WoFieldxB0W<˙1Wnx<˙nW1WxBnx<˙nW1W
27 22 26 sylibd WoFieldyBxB0W<˙ynx<˙nWyxBnx<˙nW1W
28 5 11 syl WoFieldWRing
29 nnz nn
30 2 8 12 zrhmulg WRingnHn=nW1W
31 28 29 30 syl2an WoFieldnHn=nW1W
32 31 breq2d WoFieldnx<˙Hnx<˙nW1W
33 32 rexbidva WoFieldnx<˙Hnnx<˙nW1W
34 33 ralbidv WoFieldxBnx<˙HnxBnx<˙nW1W
35 27 34 sylibrd WoFieldyBxB0W<˙ynx<˙nWyxBnx<˙Hn
36 nfv xWoField
37 nfra1 xxBnx<˙Hn
38 36 37 nfan xWoFieldxBnx<˙Hn
39 nfv xyB
40 38 39 nfan xWoFieldxBnx<˙HnyB
41 28 ad3antrrr WoFieldxBnx<˙HnyBxB0W<˙yWRing
42 simplrr WoFieldxBnx<˙HnyBxB0W<˙yxB
43 simplrl WoFieldxBnx<˙HnyBxB0W<˙yyB
44 simpr WoFieldxBnx<˙HnyBxB0W<˙y0W<˙y
45 simplll WoFieldxBnx<˙HnyBxB0W<˙yWoField
46 ringgrp WRingWGrp
47 1 7 grpidcl WGrp0WB
48 41 46 47 3syl WoFieldxBnx<˙HnyBxB0W<˙y0WB
49 3 pltne WoField0WByB0W<˙y0Wy
50 45 48 43 49 syl3anc WoFieldxBnx<˙HnyBxB0W<˙y0W<˙y0Wy
51 44 50 mpd WoFieldxBnx<˙HnyBxB0W<˙y0Wy
52 51 necomd WoFieldxBnx<˙HnyBxB0W<˙yy0W
53 4 simplbi WoFieldWField
54 isfld WFieldWDivRingWCRing
55 54 simplbi WFieldWDivRing
56 53 55 syl WoFieldWDivRing
57 eqid UnitW=UnitW
58 1 57 7 drngunit WDivRingyUnitWyBy0W
59 45 56 58 3syl WoFieldxBnx<˙HnyBxB0W<˙yyUnitWyBy0W
60 43 52 59 mpbir2and WoFieldxBnx<˙HnyBxB0W<˙yyUnitW
61 eqid /rW=/rW
62 1 57 61 dvrcl WRingxByUnitWx/rWyB
63 41 42 60 62 syl3anc WoFieldxBnx<˙HnyBxB0W<˙yx/rWyB
64 simpr WoFieldxBnx<˙HnxBnx<˙Hn
65 breq1 x=zx<˙Hnz<˙Hn
66 65 rexbidv x=znx<˙Hnnz<˙Hn
67 66 cbvralvw xBnx<˙HnzBnz<˙Hn
68 64 67 sylib WoFieldxBnx<˙HnzBnz<˙Hn
69 68 ad2antrr WoFieldxBnx<˙HnyBxB0W<˙yzBnz<˙Hn
70 breq1 z=x/rWyz<˙Hnx/rWy<˙Hn
71 70 rexbidv z=x/rWynz<˙Hnnx/rWy<˙Hn
72 71 rspcv x/rWyBzBnz<˙Hnnx/rWy<˙Hn
73 63 69 72 sylc WoFieldxBnx<˙HnyBxB0W<˙ynx/rWy<˙Hn
74 eqid W=W
75 simp-4l WoFieldyBxB0W<˙ynx/rWy<˙HnWoField
76 75 5 syl WoFieldyBxB0W<˙ynx/rWy<˙HnWoRing
77 75 28 syl WoFieldyBxB0W<˙ynx/rWy<˙HnWRing
78 simp-4r WoFieldyBxB0W<˙ynx/rWy<˙HnyBxB
79 78 simprd WoFieldyBxB0W<˙ynx/rWy<˙HnxB
80 78 simpld WoFieldyBxB0W<˙ynx/rWy<˙HnyB
81 simpllr WoFieldyBxB0W<˙ynx/rWy<˙Hn0W<˙y
82 77 46 47 3syl WoFieldyBxB0W<˙ynx/rWy<˙Hn0WB
83 75 82 80 49 syl3anc WoFieldyBxB0W<˙ynx/rWy<˙Hn0W<˙y0Wy
84 81 83 mpd WoFieldyBxB0W<˙ynx/rWy<˙Hn0Wy
85 84 necomd WoFieldyBxB0W<˙ynx/rWy<˙Hny0W
86 75 56 58 3syl WoFieldyBxB0W<˙ynx/rWy<˙HnyUnitWyBy0W
87 80 85 86 mpbir2and WoFieldyBxB0W<˙ynx/rWy<˙HnyUnitW
88 77 79 87 62 syl3anc WoFieldyBxB0W<˙ynx/rWy<˙Hnx/rWyB
89 simplr WoFieldyBxB0W<˙ynx/rWy<˙Hnn
90 75 89 31 syl2anc WoFieldyBxB0W<˙ynx/rWy<˙HnHn=nW1W
91 77 46 syl WoFieldyBxB0W<˙ynx/rWy<˙HnWGrp
92 89 29 syl WoFieldyBxB0W<˙ynx/rWy<˙Hnn
93 77 13 syl WoFieldyBxB0W<˙ynx/rWy<˙Hn1WB
94 1 8 mulgcl WGrpn1WBnW1WB
95 91 92 93 94 syl3anc WoFieldyBxB0W<˙ynx/rWy<˙HnnW1WB
96 90 95 eqeltrd WoFieldyBxB0W<˙ynx/rWy<˙HnHnB
97 75 56 syl WoFieldyBxB0W<˙ynx/rWy<˙HnWDivRing
98 simpr WoFieldyBxB0W<˙ynx/rWy<˙Hnx/rWy<˙Hn
99 1 74 7 76 88 96 80 3 97 98 81 orngrmullt WoFieldyBxB0W<˙ynx/rWy<˙Hnx/rWyWy<˙HnWy
100 1 57 61 74 dvrcan1 WRingxByUnitWx/rWyWy=x
101 77 79 87 100 syl3anc WoFieldyBxB0W<˙ynx/rWy<˙Hnx/rWyWy=x
102 90 oveq1d WoFieldyBxB0W<˙ynx/rWy<˙HnHnWy=nW1WWy
103 1 8 74 mulgass2 WRingn1WByBnW1WWy=nW1WWy
104 77 92 93 80 103 syl13anc WoFieldyBxB0W<˙ynx/rWy<˙HnnW1WWy=nW1WWy
105 1 74 12 ringlidm WRingyB1WWy=y
106 77 80 105 syl2anc WoFieldyBxB0W<˙ynx/rWy<˙Hn1WWy=y
107 106 oveq2d WoFieldyBxB0W<˙ynx/rWy<˙HnnW1WWy=nWy
108 102 104 107 3eqtrd WoFieldyBxB0W<˙ynx/rWy<˙HnHnWy=nWy
109 99 101 108 3brtr3d WoFieldyBxB0W<˙ynx/rWy<˙Hnx<˙nWy
110 109 ex WoFieldyBxB0W<˙ynx/rWy<˙Hnx<˙nWy
111 110 reximdva WoFieldyBxB0W<˙ynx/rWy<˙Hnnx<˙nWy
112 111 adantllr WoFieldxBnx<˙HnyBxB0W<˙ynx/rWy<˙Hnnx<˙nWy
113 73 112 mpd WoFieldxBnx<˙HnyBxB0W<˙ynx<˙nWy
114 113 ex WoFieldxBnx<˙HnyBxB0W<˙ynx<˙nWy
115 114 expr WoFieldxBnx<˙HnyBxB0W<˙ynx<˙nWy
116 40 115 ralrimi WoFieldxBnx<˙HnyBxB0W<˙ynx<˙nWy
117 116 ralrimiva WoFieldxBnx<˙HnyBxB0W<˙ynx<˙nWy
118 117 ex WoFieldxBnx<˙HnyBxB0W<˙ynx<˙nWy
119 35 118 impbid WoFieldyBxB0W<˙ynx<˙nWyxBnx<˙Hn
120 10 119 bitrd WoFieldWArchixBnx<˙Hn