Metamath Proof Explorer


Theorem itg1addlem5

Description: Lemma for itg1add . (Contributed by Mario Carneiro, 27-Jun-2014)

Ref Expression
Hypotheses i1fadd.1 φFdom1
i1fadd.2 φGdom1
itg1add.3 I=i,jifi=0j=00volF-1iG-1j
itg1add.4 P=+ranF×ranG
Assertion itg1addlem5 φ1F+fG=1F+1G

Proof

Step Hyp Ref Expression
1 i1fadd.1 φFdom1
2 i1fadd.2 φGdom1
3 itg1add.3 I=i,jifi=0j=00volF-1iG-1j
4 itg1add.4 P=+ranF×ranG
5 i1frn Fdom1ranFFin
6 1 5 syl φranFFin
7 i1frn Gdom1ranGFin
8 2 7 syl φranGFin
9 8 adantr φyranFranGFin
10 i1ff Fdom1F:
11 1 10 syl φF:
12 11 frnd φranF
13 12 sselda φyranFy
14 13 adantr φyranFzranGy
15 14 recnd φyranFzranGy
16 1 2 3 itg1addlem2 φI:2
17 16 ad2antrr φyranFzranGI:2
18 i1ff Gdom1G:
19 2 18 syl φG:
20 19 frnd φranG
21 20 sselda φzranGz
22 21 adantlr φyranFzranGz
23 17 14 22 fovcdmd φyranFzranGyIz
24 23 recnd φyranFzranGyIz
25 15 24 mulcld φyranFzranGyyIz
26 9 25 fsumcl φyranFzranGyyIz
27 22 recnd φyranFzranGz
28 27 24 mulcld φyranFzranGzyIz
29 9 28 fsumcl φyranFzranGzyIz
30 6 26 29 fsumadd φyranFzranGyyIz+zranGzyIz=yranFzranGyyIz+yranFzranGzyIz
31 1 2 3 4 itg1addlem4 φ1F+fG=yranFzranGy+zyIz
32 15 27 24 adddird φyranFzranGy+zyIz=yyIz+zyIz
33 32 sumeq2dv φyranFzranGy+zyIz=zranGyyIz+zyIz
34 9 25 28 fsumadd φyranFzranGyyIz+zyIz=zranGyyIz+zranGzyIz
35 33 34 eqtrd φyranFzranGy+zyIz=zranGyyIz+zranGzyIz
36 35 sumeq2dv φyranFzranGy+zyIz=yranFzranGyyIz+zranGzyIz
37 31 36 eqtrd φ1F+fG=yranFzranGyyIz+zranGzyIz
38 itg1val Fdom11F=yranF0yvolF-1y
39 1 38 syl φ1F=yranF0yvolF-1y
40 19 adantr φyranF0G:
41 8 adantr φyranF0ranGFin
42 inss2 F-1yG-1zG-1z
43 42 a1i φyranF0zranGF-1yG-1zG-1z
44 i1fima Fdom1F-1ydomvol
45 1 44 syl φF-1ydomvol
46 45 ad2antrr φyranF0zranGF-1ydomvol
47 i1fima Gdom1G-1zdomvol
48 2 47 syl φG-1zdomvol
49 48 ad2antrr φyranF0zranGG-1zdomvol
50 inmbl F-1ydomvolG-1zdomvolF-1yG-1zdomvol
51 46 49 50 syl2anc φyranF0zranGF-1yG-1zdomvol
52 12 ssdifssd φranF0
53 52 sselda φyranF0y
54 53 adantr φyranF0zranGy
55 20 adantr φyranF0ranG
56 55 sselda φyranF0zranGz
57 eldifsni yranF0y0
58 57 ad2antlr φyranF0zranGy0
59 simpl y=0z=0y=0
60 59 necon3ai y0¬y=0z=0
61 58 60 syl φyranF0zranG¬y=0z=0
62 1 2 3 itg1addlem3 yz¬y=0z=0yIz=volF-1yG-1z
63 54 56 61 62 syl21anc φyranF0zranGyIz=volF-1yG-1z
64 16 ad2antrr φyranF0zranGI:2
65 64 54 56 fovcdmd φyranF0zranGyIz
66 63 65 eqeltrrd φyranF0zranGvolF-1yG-1z
67 40 41 43 51 66 itg1addlem1 φyranF0volzranGF-1yG-1z=zranGvolF-1yG-1z
68 iunin2 zranGF-1yG-1z=F-1yzranGG-1z
69 1 adantr φyranF0Fdom1
70 69 44 syl φyranF0F-1ydomvol
71 mblss F-1ydomvolF-1y
72 70 71 syl φyranF0F-1y
73 iunid zranGz=ranG
74 73 imaeq2i G-1zranGz=G-1ranG
75 imaiun G-1zranGz=zranGG-1z
76 cnvimarndm G-1ranG=domG
77 74 75 76 3eqtr3i zranGG-1z=domG
78 40 fdmd φyranF0domG=
79 77 78 eqtrid φyranF0zranGG-1z=
80 72 79 sseqtrrd φyranF0F-1yzranGG-1z
81 df-ss F-1yzranGG-1zF-1yzranGG-1z=F-1y
82 80 81 sylib φyranF0F-1yzranGG-1z=F-1y
83 68 82 eqtr2id φyranF0F-1y=zranGF-1yG-1z
84 83 fveq2d φyranF0volF-1y=volzranGF-1yG-1z
85 63 sumeq2dv φyranF0zranGyIz=zranGvolF-1yG-1z
86 67 84 85 3eqtr4d φyranF0volF-1y=zranGyIz
87 86 oveq2d φyranF0yvolF-1y=yzranGyIz
88 53 recnd φyranF0y
89 65 recnd φyranF0zranGyIz
90 41 88 89 fsummulc2 φyranF0yzranGyIz=zranGyyIz
91 87 90 eqtrd φyranF0yvolF-1y=zranGyyIz
92 91 sumeq2dv φyranF0yvolF-1y=yranF0zranGyyIz
93 difssd φranF0ranF
94 54 recnd φyranF0zranGy
95 94 89 mulcld φyranF0zranGyyIz
96 41 95 fsumcl φyranF0zranGyyIz
97 dfin4 ranF0=ranFranF0
98 inss2 ranF00
99 97 98 eqsstrri ranFranF00
100 99 sseli yranFranF0y0
101 elsni y0y=0
102 101 ad2antlr φy0zranGy=0
103 102 oveq1d φy0zranGyyIz=0yIz
104 16 ad2antrr φy0zranGI:2
105 0re 0
106 102 105 eqeltrdi φy0zranGy
107 21 adantlr φy0zranGz
108 104 106 107 fovcdmd φy0zranGyIz
109 108 recnd φy0zranGyIz
110 109 mul02d φy0zranG0yIz=0
111 103 110 eqtrd φy0zranGyyIz=0
112 111 sumeq2dv φy0zranGyyIz=zranG0
113 8 adantr φy0ranGFin
114 113 olcd φy0ranG0ranGFin
115 sumz ranG0ranGFinzranG0=0
116 114 115 syl φy0zranG0=0
117 112 116 eqtrd φy0zranGyyIz=0
118 100 117 sylan2 φyranFranF0zranGyyIz=0
119 93 96 118 6 fsumss φyranF0zranGyyIz=yranFzranGyyIz
120 39 92 119 3eqtrd φ1F=yranFzranGyyIz
121 itg1val Gdom11G=zranG0zvolG-1z
122 2 121 syl φ1G=zranG0zvolG-1z
123 11 adantr φzranG0F:
124 6 adantr φzranG0ranFFin
125 inss1 F-1yG-1zF-1y
126 125 a1i φzranG0yranFF-1yG-1zF-1y
127 45 ad2antrr φzranG0yranFF-1ydomvol
128 48 ad2antrr φzranG0yranFG-1zdomvol
129 127 128 50 syl2anc φzranG0yranFF-1yG-1zdomvol
130 12 adantr φzranG0ranF
131 130 sselda φzranG0yranFy
132 20 ssdifssd φranG0
133 132 sselda φzranG0z
134 133 adantr φzranG0yranFz
135 eldifsni zranG0z0
136 135 ad2antlr φzranG0yranFz0
137 simpr y=0z=0z=0
138 137 necon3ai z0¬y=0z=0
139 136 138 syl φzranG0yranF¬y=0z=0
140 131 134 139 62 syl21anc φzranG0yranFyIz=volF-1yG-1z
141 16 ad2antrr φzranG0yranFI:2
142 141 131 134 fovcdmd φzranG0yranFyIz
143 140 142 eqeltrrd φzranG0yranFvolF-1yG-1z
144 123 124 126 129 143 itg1addlem1 φzranG0volyranFF-1yG-1z=yranFvolF-1yG-1z
145 incom F-1yG-1z=G-1zF-1y
146 145 a1i yranFF-1yG-1z=G-1zF-1y
147 146 iuneq2i yranFF-1yG-1z=yranFG-1zF-1y
148 iunin2 yranFG-1zF-1y=G-1zyranFF-1y
149 147 148 eqtri yranFF-1yG-1z=G-1zyranFF-1y
150 cnvimass G-1zdomG
151 19 fdmd φdomG=
152 151 adantr φzranG0domG=
153 150 152 sseqtrid φzranG0G-1z
154 iunid yranFy=ranF
155 154 imaeq2i F-1yranFy=F-1ranF
156 imaiun F-1yranFy=yranFF-1y
157 cnvimarndm F-1ranF=domF
158 155 156 157 3eqtr3i yranFF-1y=domF
159 11 fdmd φdomF=
160 159 adantr φzranG0domF=
161 158 160 eqtrid φzranG0yranFF-1y=
162 153 161 sseqtrrd φzranG0G-1zyranFF-1y
163 df-ss G-1zyranFF-1yG-1zyranFF-1y=G-1z
164 162 163 sylib φzranG0G-1zyranFF-1y=G-1z
165 149 164 eqtr2id φzranG0G-1z=yranFF-1yG-1z
166 165 fveq2d φzranG0volG-1z=volyranFF-1yG-1z
167 140 sumeq2dv φzranG0yranFyIz=yranFvolF-1yG-1z
168 144 166 167 3eqtr4d φzranG0volG-1z=yranFyIz
169 168 oveq2d φzranG0zvolG-1z=zyranFyIz
170 133 recnd φzranG0z
171 142 recnd φzranG0yranFyIz
172 124 170 171 fsummulc2 φzranG0zyranFyIz=yranFzyIz
173 169 172 eqtrd φzranG0zvolG-1z=yranFzyIz
174 173 sumeq2dv φzranG0zvolG-1z=zranG0yranFzyIz
175 difssd φranG0ranG
176 170 adantr φzranG0yranFz
177 176 171 mulcld φzranG0yranFzyIz
178 124 177 fsumcl φzranG0yranFzyIz
179 dfin4 ranG0=ranGranG0
180 inss2 ranG00
181 179 180 eqsstrri ranGranG00
182 181 sseli zranGranG0z0
183 elsni z0z=0
184 183 ad2antlr φz0yranFz=0
185 184 oveq1d φz0yranFzyIz=0yIz
186 16 ad2antrr φz0yranFI:2
187 13 adantlr φz0yranFy
188 184 105 eqeltrdi φz0yranFz
189 186 187 188 fovcdmd φz0yranFyIz
190 189 recnd φz0yranFyIz
191 190 mul02d φz0yranF0yIz=0
192 185 191 eqtrd φz0yranFzyIz=0
193 192 sumeq2dv φz0yranFzyIz=yranF0
194 6 adantr φz0ranFFin
195 194 olcd φz0ranF0ranFFin
196 sumz ranF0ranFFinyranF0=0
197 195 196 syl φz0yranF0=0
198 193 197 eqtrd φz0yranFzyIz=0
199 182 198 sylan2 φzranGranG0yranFzyIz=0
200 175 178 199 8 fsumss φzranG0yranFzyIz=zranGyranFzyIz
201 21 adantr φzranGyranFz
202 201 recnd φzranGyranFz
203 16 ad2antrr φzranGyranFI:2
204 12 adantr φzranGranF
205 204 sselda φzranGyranFy
206 203 205 201 fovcdmd φzranGyranFyIz
207 206 recnd φzranGyranFyIz
208 202 207 mulcld φzranGyranFzyIz
209 208 anasss φzranGyranFzyIz
210 8 6 209 fsumcom φzranGyranFzyIz=yranFzranGzyIz
211 200 210 eqtrd φzranG0yranFzyIz=yranFzranGzyIz
212 122 174 211 3eqtrd φ1G=yranFzranGzyIz
213 120 212 oveq12d φ1F+1G=yranFzranGyyIz+yranFzranGzyIz
214 30 37 213 3eqtr4d φ1F+fG=1F+1G