Database
BASIC REAL AND COMPLEX ANALYSIS
Integrals
Lebesgue integration
Lesbesgue integral
itg1addlem5
Next ⟩
itg1add
Metamath Proof Explorer
Ascii
Unicode
Theorem
itg1addlem5
Description:
Lemma for
itg1add
.
(Contributed by
Mario Carneiro
, 27-Jun-2014)
Ref
Expression
Hypotheses
i1fadd.1
⊢
φ
→
F
∈
dom
∫
1
i1fadd.2
⊢
φ
→
G
∈
dom
∫
1
itg1add.3
⊢
I
=
i
∈
ℝ
,
j
∈
ℝ
⟼
if
i
=
0
∧
j
=
0
0
vol
F
-1
i
∩
G
-1
j
itg1add.4
⊢
P
=
+
↾
ran
F
×
ran
G
Assertion
itg1addlem5
⊢
φ
→
∫
1
F
+
f
G
=
∫
1
F
+
∫
1
G
Proof
Step
Hyp
Ref
Expression
1
i1fadd.1
⊢
φ
→
F
∈
dom
∫
1
2
i1fadd.2
⊢
φ
→
G
∈
dom
∫
1
3
itg1add.3
⊢
I
=
i
∈
ℝ
,
j
∈
ℝ
⟼
if
i
=
0
∧
j
=
0
0
vol
F
-1
i
∩
G
-1
j
4
itg1add.4
⊢
P
=
+
↾
ran
F
×
ran
G
5
i1frn
⊢
F
∈
dom
∫
1
→
ran
F
∈
Fin
6
1
5
syl
⊢
φ
→
ran
F
∈
Fin
7
i1frn
⊢
G
∈
dom
∫
1
→
ran
G
∈
Fin
8
2
7
syl
⊢
φ
→
ran
G
∈
Fin
9
8
adantr
⊢
φ
∧
y
∈
ran
F
→
ran
G
∈
Fin
10
i1ff
⊢
F
∈
dom
∫
1
→
F
:
ℝ
⟶
ℝ
11
1
10
syl
⊢
φ
→
F
:
ℝ
⟶
ℝ
12
11
frnd
⊢
φ
→
ran
F
⊆
ℝ
13
12
sselda
⊢
φ
∧
y
∈
ran
F
→
y
∈
ℝ
14
13
adantr
⊢
φ
∧
y
∈
ran
F
∧
z
∈
ran
G
→
y
∈
ℝ
15
14
recnd
⊢
φ
∧
y
∈
ran
F
∧
z
∈
ran
G
→
y
∈
ℂ
16
1
2
3
itg1addlem2
⊢
φ
→
I
:
ℝ
2
⟶
ℝ
17
16
ad2antrr
⊢
φ
∧
y
∈
ran
F
∧
z
∈
ran
G
→
I
:
ℝ
2
⟶
ℝ
18
i1ff
⊢
G
∈
dom
∫
1
→
G
:
ℝ
⟶
ℝ
19
2
18
syl
⊢
φ
→
G
:
ℝ
⟶
ℝ
20
19
frnd
⊢
φ
→
ran
G
⊆
ℝ
21
20
sselda
⊢
φ
∧
z
∈
ran
G
→
z
∈
ℝ
22
21
adantlr
⊢
φ
∧
y
∈
ran
F
∧
z
∈
ran
G
→
z
∈
ℝ
23
17
14
22
fovcdmd
⊢
φ
∧
y
∈
ran
F
∧
z
∈
ran
G
→
y
I
z
∈
ℝ
24
23
recnd
⊢
φ
∧
y
∈
ran
F
∧
z
∈
ran
G
→
y
I
z
∈
ℂ
25
15
24
mulcld
⊢
φ
∧
y
∈
ran
F
∧
z
∈
ran
G
→
y
y
I
z
∈
ℂ
26
9
25
fsumcl
⊢
φ
∧
y
∈
ran
F
→
∑
z
∈
ran
G
y
y
I
z
∈
ℂ
27
22
recnd
⊢
φ
∧
y
∈
ran
F
∧
z
∈
ran
G
→
z
∈
ℂ
28
27
24
mulcld
⊢
φ
∧
y
∈
ran
F
∧
z
∈
ran
G
→
z
y
I
z
∈
ℂ
29
9
28
fsumcl
⊢
φ
∧
y
∈
ran
F
→
∑
z
∈
ran
G
z
y
I
z
∈
ℂ
30
6
26
29
fsumadd
⊢
φ
→
∑
y
∈
ran
F
∑
z
∈
ran
G
y
y
I
z
+
∑
z
∈
ran
G
z
y
I
z
=
∑
y
∈
ran
F
∑
z
∈
ran
G
y
y
I
z
+
∑
y
∈
ran
F
∑
z
∈
ran
G
z
y
I
z
31
1
2
3
4
itg1addlem4
⊢
φ
→
∫
1
F
+
f
G
=
∑
y
∈
ran
F
∑
z
∈
ran
G
y
+
z
y
I
z
32
15
27
24
adddird
⊢
φ
∧
y
∈
ran
F
∧
z
∈
ran
G
→
y
+
z
y
I
z
=
y
y
I
z
+
z
y
I
z
33
32
sumeq2dv
⊢
φ
∧
y
∈
ran
F
→
∑
z
∈
ran
G
y
+
z
y
I
z
=
∑
z
∈
ran
G
y
y
I
z
+
z
y
I
z
34
9
25
28
fsumadd
⊢
φ
∧
y
∈
ran
F
→
∑
z
∈
ran
G
y
y
I
z
+
z
y
I
z
=
∑
z
∈
ran
G
y
y
I
z
+
∑
z
∈
ran
G
z
y
I
z
35
33
34
eqtrd
⊢
φ
∧
y
∈
ran
F
→
∑
z
∈
ran
G
y
+
z
y
I
z
=
∑
z
∈
ran
G
y
y
I
z
+
∑
z
∈
ran
G
z
y
I
z
36
35
sumeq2dv
⊢
φ
→
∑
y
∈
ran
F
∑
z
∈
ran
G
y
+
z
y
I
z
=
∑
y
∈
ran
F
∑
z
∈
ran
G
y
y
I
z
+
∑
z
∈
ran
G
z
y
I
z
37
31
36
eqtrd
⊢
φ
→
∫
1
F
+
f
G
=
∑
y
∈
ran
F
∑
z
∈
ran
G
y
y
I
z
+
∑
z
∈
ran
G
z
y
I
z
38
itg1val
⊢
F
∈
dom
∫
1
→
∫
1
F
=
∑
y
∈
ran
F
∖
0
y
vol
F
-1
y
39
1
38
syl
⊢
φ
→
∫
1
F
=
∑
y
∈
ran
F
∖
0
y
vol
F
-1
y
40
19
adantr
⊢
φ
∧
y
∈
ran
F
∖
0
→
G
:
ℝ
⟶
ℝ
41
8
adantr
⊢
φ
∧
y
∈
ran
F
∖
0
→
ran
G
∈
Fin
42
inss2
⊢
F
-1
y
∩
G
-1
z
⊆
G
-1
z
43
42
a1i
⊢
φ
∧
y
∈
ran
F
∖
0
∧
z
∈
ran
G
→
F
-1
y
∩
G
-1
z
⊆
G
-1
z
44
i1fima
⊢
F
∈
dom
∫
1
→
F
-1
y
∈
dom
vol
45
1
44
syl
⊢
φ
→
F
-1
y
∈
dom
vol
46
45
ad2antrr
⊢
φ
∧
y
∈
ran
F
∖
0
∧
z
∈
ran
G
→
F
-1
y
∈
dom
vol
47
i1fima
⊢
G
∈
dom
∫
1
→
G
-1
z
∈
dom
vol
48
2
47
syl
⊢
φ
→
G
-1
z
∈
dom
vol
49
48
ad2antrr
⊢
φ
∧
y
∈
ran
F
∖
0
∧
z
∈
ran
G
→
G
-1
z
∈
dom
vol
50
inmbl
⊢
F
-1
y
∈
dom
vol
∧
G
-1
z
∈
dom
vol
→
F
-1
y
∩
G
-1
z
∈
dom
vol
51
46
49
50
syl2anc
⊢
φ
∧
y
∈
ran
F
∖
0
∧
z
∈
ran
G
→
F
-1
y
∩
G
-1
z
∈
dom
vol
52
12
ssdifssd
⊢
φ
→
ran
F
∖
0
⊆
ℝ
53
52
sselda
⊢
φ
∧
y
∈
ran
F
∖
0
→
y
∈
ℝ
54
53
adantr
⊢
φ
∧
y
∈
ran
F
∖
0
∧
z
∈
ran
G
→
y
∈
ℝ
55
20
adantr
⊢
φ
∧
y
∈
ran
F
∖
0
→
ran
G
⊆
ℝ
56
55
sselda
⊢
φ
∧
y
∈
ran
F
∖
0
∧
z
∈
ran
G
→
z
∈
ℝ
57
eldifsni
⊢
y
∈
ran
F
∖
0
→
y
≠
0
58
57
ad2antlr
⊢
φ
∧
y
∈
ran
F
∖
0
∧
z
∈
ran
G
→
y
≠
0
59
simpl
⊢
y
=
0
∧
z
=
0
→
y
=
0
60
59
necon3ai
⊢
y
≠
0
→
¬
y
=
0
∧
z
=
0
61
58
60
syl
⊢
φ
∧
y
∈
ran
F
∖
0
∧
z
∈
ran
G
→
¬
y
=
0
∧
z
=
0
62
1
2
3
itg1addlem3
⊢
y
∈
ℝ
∧
z
∈
ℝ
∧
¬
y
=
0
∧
z
=
0
→
y
I
z
=
vol
F
-1
y
∩
G
-1
z
63
54
56
61
62
syl21anc
⊢
φ
∧
y
∈
ran
F
∖
0
∧
z
∈
ran
G
→
y
I
z
=
vol
F
-1
y
∩
G
-1
z
64
16
ad2antrr
⊢
φ
∧
y
∈
ran
F
∖
0
∧
z
∈
ran
G
→
I
:
ℝ
2
⟶
ℝ
65
64
54
56
fovcdmd
⊢
φ
∧
y
∈
ran
F
∖
0
∧
z
∈
ran
G
→
y
I
z
∈
ℝ
66
63
65
eqeltrrd
⊢
φ
∧
y
∈
ran
F
∖
0
∧
z
∈
ran
G
→
vol
F
-1
y
∩
G
-1
z
∈
ℝ
67
40
41
43
51
66
itg1addlem1
⊢
φ
∧
y
∈
ran
F
∖
0
→
vol
⋃
z
∈
ran
G
F
-1
y
∩
G
-1
z
=
∑
z
∈
ran
G
vol
F
-1
y
∩
G
-1
z
68
iunin2
⊢
⋃
z
∈
ran
G
F
-1
y
∩
G
-1
z
=
F
-1
y
∩
⋃
z
∈
ran
G
G
-1
z
69
1
adantr
⊢
φ
∧
y
∈
ran
F
∖
0
→
F
∈
dom
∫
1
70
69
44
syl
⊢
φ
∧
y
∈
ran
F
∖
0
→
F
-1
y
∈
dom
vol
71
mblss
⊢
F
-1
y
∈
dom
vol
→
F
-1
y
⊆
ℝ
72
70
71
syl
⊢
φ
∧
y
∈
ran
F
∖
0
→
F
-1
y
⊆
ℝ
73
iunid
⊢
⋃
z
∈
ran
G
z
=
ran
G
74
73
imaeq2i
⊢
G
-1
⋃
z
∈
ran
G
z
=
G
-1
ran
G
75
imaiun
⊢
G
-1
⋃
z
∈
ran
G
z
=
⋃
z
∈
ran
G
G
-1
z
76
cnvimarndm
⊢
G
-1
ran
G
=
dom
G
77
74
75
76
3eqtr3i
⊢
⋃
z
∈
ran
G
G
-1
z
=
dom
G
78
40
fdmd
⊢
φ
∧
y
∈
ran
F
∖
0
→
dom
G
=
ℝ
79
77
78
eqtrid
⊢
φ
∧
y
∈
ran
F
∖
0
→
⋃
z
∈
ran
G
G
-1
z
=
ℝ
80
72
79
sseqtrrd
⊢
φ
∧
y
∈
ran
F
∖
0
→
F
-1
y
⊆
⋃
z
∈
ran
G
G
-1
z
81
df-ss
⊢
F
-1
y
⊆
⋃
z
∈
ran
G
G
-1
z
↔
F
-1
y
∩
⋃
z
∈
ran
G
G
-1
z
=
F
-1
y
82
80
81
sylib
⊢
φ
∧
y
∈
ran
F
∖
0
→
F
-1
y
∩
⋃
z
∈
ran
G
G
-1
z
=
F
-1
y
83
68
82
eqtr2id
⊢
φ
∧
y
∈
ran
F
∖
0
→
F
-1
y
=
⋃
z
∈
ran
G
F
-1
y
∩
G
-1
z
84
83
fveq2d
⊢
φ
∧
y
∈
ran
F
∖
0
→
vol
F
-1
y
=
vol
⋃
z
∈
ran
G
F
-1
y
∩
G
-1
z
85
63
sumeq2dv
⊢
φ
∧
y
∈
ran
F
∖
0
→
∑
z
∈
ran
G
y
I
z
=
∑
z
∈
ran
G
vol
F
-1
y
∩
G
-1
z
86
67
84
85
3eqtr4d
⊢
φ
∧
y
∈
ran
F
∖
0
→
vol
F
-1
y
=
∑
z
∈
ran
G
y
I
z
87
86
oveq2d
⊢
φ
∧
y
∈
ran
F
∖
0
→
y
vol
F
-1
y
=
y
∑
z
∈
ran
G
y
I
z
88
53
recnd
⊢
φ
∧
y
∈
ran
F
∖
0
→
y
∈
ℂ
89
65
recnd
⊢
φ
∧
y
∈
ran
F
∖
0
∧
z
∈
ran
G
→
y
I
z
∈
ℂ
90
41
88
89
fsummulc2
⊢
φ
∧
y
∈
ran
F
∖
0
→
y
∑
z
∈
ran
G
y
I
z
=
∑
z
∈
ran
G
y
y
I
z
91
87
90
eqtrd
⊢
φ
∧
y
∈
ran
F
∖
0
→
y
vol
F
-1
y
=
∑
z
∈
ran
G
y
y
I
z
92
91
sumeq2dv
⊢
φ
→
∑
y
∈
ran
F
∖
0
y
vol
F
-1
y
=
∑
y
∈
ran
F
∖
0
∑
z
∈
ran
G
y
y
I
z
93
difssd
⊢
φ
→
ran
F
∖
0
⊆
ran
F
94
54
recnd
⊢
φ
∧
y
∈
ran
F
∖
0
∧
z
∈
ran
G
→
y
∈
ℂ
95
94
89
mulcld
⊢
φ
∧
y
∈
ran
F
∖
0
∧
z
∈
ran
G
→
y
y
I
z
∈
ℂ
96
41
95
fsumcl
⊢
φ
∧
y
∈
ran
F
∖
0
→
∑
z
∈
ran
G
y
y
I
z
∈
ℂ
97
dfin4
⊢
ran
F
∩
0
=
ran
F
∖
ran
F
∖
0
98
inss2
⊢
ran
F
∩
0
⊆
0
99
97
98
eqsstrri
⊢
ran
F
∖
ran
F
∖
0
⊆
0
100
99
sseli
⊢
y
∈
ran
F
∖
ran
F
∖
0
→
y
∈
0
101
elsni
⊢
y
∈
0
→
y
=
0
102
101
ad2antlr
⊢
φ
∧
y
∈
0
∧
z
∈
ran
G
→
y
=
0
103
102
oveq1d
⊢
φ
∧
y
∈
0
∧
z
∈
ran
G
→
y
y
I
z
=
0
⋅
y
I
z
104
16
ad2antrr
⊢
φ
∧
y
∈
0
∧
z
∈
ran
G
→
I
:
ℝ
2
⟶
ℝ
105
0re
⊢
0
∈
ℝ
106
102
105
eqeltrdi
⊢
φ
∧
y
∈
0
∧
z
∈
ran
G
→
y
∈
ℝ
107
21
adantlr
⊢
φ
∧
y
∈
0
∧
z
∈
ran
G
→
z
∈
ℝ
108
104
106
107
fovcdmd
⊢
φ
∧
y
∈
0
∧
z
∈
ran
G
→
y
I
z
∈
ℝ
109
108
recnd
⊢
φ
∧
y
∈
0
∧
z
∈
ran
G
→
y
I
z
∈
ℂ
110
109
mul02d
⊢
φ
∧
y
∈
0
∧
z
∈
ran
G
→
0
⋅
y
I
z
=
0
111
103
110
eqtrd
⊢
φ
∧
y
∈
0
∧
z
∈
ran
G
→
y
y
I
z
=
0
112
111
sumeq2dv
⊢
φ
∧
y
∈
0
→
∑
z
∈
ran
G
y
y
I
z
=
∑
z
∈
ran
G
0
113
8
adantr
⊢
φ
∧
y
∈
0
→
ran
G
∈
Fin
114
113
olcd
⊢
φ
∧
y
∈
0
→
ran
G
⊆
ℤ
≥
0
∨
ran
G
∈
Fin
115
sumz
⊢
ran
G
⊆
ℤ
≥
0
∨
ran
G
∈
Fin
→
∑
z
∈
ran
G
0
=
0
116
114
115
syl
⊢
φ
∧
y
∈
0
→
∑
z
∈
ran
G
0
=
0
117
112
116
eqtrd
⊢
φ
∧
y
∈
0
→
∑
z
∈
ran
G
y
y
I
z
=
0
118
100
117
sylan2
⊢
φ
∧
y
∈
ran
F
∖
ran
F
∖
0
→
∑
z
∈
ran
G
y
y
I
z
=
0
119
93
96
118
6
fsumss
⊢
φ
→
∑
y
∈
ran
F
∖
0
∑
z
∈
ran
G
y
y
I
z
=
∑
y
∈
ran
F
∑
z
∈
ran
G
y
y
I
z
120
39
92
119
3eqtrd
⊢
φ
→
∫
1
F
=
∑
y
∈
ran
F
∑
z
∈
ran
G
y
y
I
z
121
itg1val
⊢
G
∈
dom
∫
1
→
∫
1
G
=
∑
z
∈
ran
G
∖
0
z
vol
G
-1
z
122
2
121
syl
⊢
φ
→
∫
1
G
=
∑
z
∈
ran
G
∖
0
z
vol
G
-1
z
123
11
adantr
⊢
φ
∧
z
∈
ran
G
∖
0
→
F
:
ℝ
⟶
ℝ
124
6
adantr
⊢
φ
∧
z
∈
ran
G
∖
0
→
ran
F
∈
Fin
125
inss1
⊢
F
-1
y
∩
G
-1
z
⊆
F
-1
y
126
125
a1i
⊢
φ
∧
z
∈
ran
G
∖
0
∧
y
∈
ran
F
→
F
-1
y
∩
G
-1
z
⊆
F
-1
y
127
45
ad2antrr
⊢
φ
∧
z
∈
ran
G
∖
0
∧
y
∈
ran
F
→
F
-1
y
∈
dom
vol
128
48
ad2antrr
⊢
φ
∧
z
∈
ran
G
∖
0
∧
y
∈
ran
F
→
G
-1
z
∈
dom
vol
129
127
128
50
syl2anc
⊢
φ
∧
z
∈
ran
G
∖
0
∧
y
∈
ran
F
→
F
-1
y
∩
G
-1
z
∈
dom
vol
130
12
adantr
⊢
φ
∧
z
∈
ran
G
∖
0
→
ran
F
⊆
ℝ
131
130
sselda
⊢
φ
∧
z
∈
ran
G
∖
0
∧
y
∈
ran
F
→
y
∈
ℝ
132
20
ssdifssd
⊢
φ
→
ran
G
∖
0
⊆
ℝ
133
132
sselda
⊢
φ
∧
z
∈
ran
G
∖
0
→
z
∈
ℝ
134
133
adantr
⊢
φ
∧
z
∈
ran
G
∖
0
∧
y
∈
ran
F
→
z
∈
ℝ
135
eldifsni
⊢
z
∈
ran
G
∖
0
→
z
≠
0
136
135
ad2antlr
⊢
φ
∧
z
∈
ran
G
∖
0
∧
y
∈
ran
F
→
z
≠
0
137
simpr
⊢
y
=
0
∧
z
=
0
→
z
=
0
138
137
necon3ai
⊢
z
≠
0
→
¬
y
=
0
∧
z
=
0
139
136
138
syl
⊢
φ
∧
z
∈
ran
G
∖
0
∧
y
∈
ran
F
→
¬
y
=
0
∧
z
=
0
140
131
134
139
62
syl21anc
⊢
φ
∧
z
∈
ran
G
∖
0
∧
y
∈
ran
F
→
y
I
z
=
vol
F
-1
y
∩
G
-1
z
141
16
ad2antrr
⊢
φ
∧
z
∈
ran
G
∖
0
∧
y
∈
ran
F
→
I
:
ℝ
2
⟶
ℝ
142
141
131
134
fovcdmd
⊢
φ
∧
z
∈
ran
G
∖
0
∧
y
∈
ran
F
→
y
I
z
∈
ℝ
143
140
142
eqeltrrd
⊢
φ
∧
z
∈
ran
G
∖
0
∧
y
∈
ran
F
→
vol
F
-1
y
∩
G
-1
z
∈
ℝ
144
123
124
126
129
143
itg1addlem1
⊢
φ
∧
z
∈
ran
G
∖
0
→
vol
⋃
y
∈
ran
F
F
-1
y
∩
G
-1
z
=
∑
y
∈
ran
F
vol
F
-1
y
∩
G
-1
z
145
incom
⊢
F
-1
y
∩
G
-1
z
=
G
-1
z
∩
F
-1
y
146
145
a1i
⊢
y
∈
ran
F
→
F
-1
y
∩
G
-1
z
=
G
-1
z
∩
F
-1
y
147
146
iuneq2i
⊢
⋃
y
∈
ran
F
F
-1
y
∩
G
-1
z
=
⋃
y
∈
ran
F
G
-1
z
∩
F
-1
y
148
iunin2
⊢
⋃
y
∈
ran
F
G
-1
z
∩
F
-1
y
=
G
-1
z
∩
⋃
y
∈
ran
F
F
-1
y
149
147
148
eqtri
⊢
⋃
y
∈
ran
F
F
-1
y
∩
G
-1
z
=
G
-1
z
∩
⋃
y
∈
ran
F
F
-1
y
150
cnvimass
⊢
G
-1
z
⊆
dom
G
151
19
fdmd
⊢
φ
→
dom
G
=
ℝ
152
151
adantr
⊢
φ
∧
z
∈
ran
G
∖
0
→
dom
G
=
ℝ
153
150
152
sseqtrid
⊢
φ
∧
z
∈
ran
G
∖
0
→
G
-1
z
⊆
ℝ
154
iunid
⊢
⋃
y
∈
ran
F
y
=
ran
F
155
154
imaeq2i
⊢
F
-1
⋃
y
∈
ran
F
y
=
F
-1
ran
F
156
imaiun
⊢
F
-1
⋃
y
∈
ran
F
y
=
⋃
y
∈
ran
F
F
-1
y
157
cnvimarndm
⊢
F
-1
ran
F
=
dom
F
158
155
156
157
3eqtr3i
⊢
⋃
y
∈
ran
F
F
-1
y
=
dom
F
159
11
fdmd
⊢
φ
→
dom
F
=
ℝ
160
159
adantr
⊢
φ
∧
z
∈
ran
G
∖
0
→
dom
F
=
ℝ
161
158
160
eqtrid
⊢
φ
∧
z
∈
ran
G
∖
0
→
⋃
y
∈
ran
F
F
-1
y
=
ℝ
162
153
161
sseqtrrd
⊢
φ
∧
z
∈
ran
G
∖
0
→
G
-1
z
⊆
⋃
y
∈
ran
F
F
-1
y
163
df-ss
⊢
G
-1
z
⊆
⋃
y
∈
ran
F
F
-1
y
↔
G
-1
z
∩
⋃
y
∈
ran
F
F
-1
y
=
G
-1
z
164
162
163
sylib
⊢
φ
∧
z
∈
ran
G
∖
0
→
G
-1
z
∩
⋃
y
∈
ran
F
F
-1
y
=
G
-1
z
165
149
164
eqtr2id
⊢
φ
∧
z
∈
ran
G
∖
0
→
G
-1
z
=
⋃
y
∈
ran
F
F
-1
y
∩
G
-1
z
166
165
fveq2d
⊢
φ
∧
z
∈
ran
G
∖
0
→
vol
G
-1
z
=
vol
⋃
y
∈
ran
F
F
-1
y
∩
G
-1
z
167
140
sumeq2dv
⊢
φ
∧
z
∈
ran
G
∖
0
→
∑
y
∈
ran
F
y
I
z
=
∑
y
∈
ran
F
vol
F
-1
y
∩
G
-1
z
168
144
166
167
3eqtr4d
⊢
φ
∧
z
∈
ran
G
∖
0
→
vol
G
-1
z
=
∑
y
∈
ran
F
y
I
z
169
168
oveq2d
⊢
φ
∧
z
∈
ran
G
∖
0
→
z
vol
G
-1
z
=
z
∑
y
∈
ran
F
y
I
z
170
133
recnd
⊢
φ
∧
z
∈
ran
G
∖
0
→
z
∈
ℂ
171
142
recnd
⊢
φ
∧
z
∈
ran
G
∖
0
∧
y
∈
ran
F
→
y
I
z
∈
ℂ
172
124
170
171
fsummulc2
⊢
φ
∧
z
∈
ran
G
∖
0
→
z
∑
y
∈
ran
F
y
I
z
=
∑
y
∈
ran
F
z
y
I
z
173
169
172
eqtrd
⊢
φ
∧
z
∈
ran
G
∖
0
→
z
vol
G
-1
z
=
∑
y
∈
ran
F
z
y
I
z
174
173
sumeq2dv
⊢
φ
→
∑
z
∈
ran
G
∖
0
z
vol
G
-1
z
=
∑
z
∈
ran
G
∖
0
∑
y
∈
ran
F
z
y
I
z
175
difssd
⊢
φ
→
ran
G
∖
0
⊆
ran
G
176
170
adantr
⊢
φ
∧
z
∈
ran
G
∖
0
∧
y
∈
ran
F
→
z
∈
ℂ
177
176
171
mulcld
⊢
φ
∧
z
∈
ran
G
∖
0
∧
y
∈
ran
F
→
z
y
I
z
∈
ℂ
178
124
177
fsumcl
⊢
φ
∧
z
∈
ran
G
∖
0
→
∑
y
∈
ran
F
z
y
I
z
∈
ℂ
179
dfin4
⊢
ran
G
∩
0
=
ran
G
∖
ran
G
∖
0
180
inss2
⊢
ran
G
∩
0
⊆
0
181
179
180
eqsstrri
⊢
ran
G
∖
ran
G
∖
0
⊆
0
182
181
sseli
⊢
z
∈
ran
G
∖
ran
G
∖
0
→
z
∈
0
183
elsni
⊢
z
∈
0
→
z
=
0
184
183
ad2antlr
⊢
φ
∧
z
∈
0
∧
y
∈
ran
F
→
z
=
0
185
184
oveq1d
⊢
φ
∧
z
∈
0
∧
y
∈
ran
F
→
z
y
I
z
=
0
⋅
y
I
z
186
16
ad2antrr
⊢
φ
∧
z
∈
0
∧
y
∈
ran
F
→
I
:
ℝ
2
⟶
ℝ
187
13
adantlr
⊢
φ
∧
z
∈
0
∧
y
∈
ran
F
→
y
∈
ℝ
188
184
105
eqeltrdi
⊢
φ
∧
z
∈
0
∧
y
∈
ran
F
→
z
∈
ℝ
189
186
187
188
fovcdmd
⊢
φ
∧
z
∈
0
∧
y
∈
ran
F
→
y
I
z
∈
ℝ
190
189
recnd
⊢
φ
∧
z
∈
0
∧
y
∈
ran
F
→
y
I
z
∈
ℂ
191
190
mul02d
⊢
φ
∧
z
∈
0
∧
y
∈
ran
F
→
0
⋅
y
I
z
=
0
192
185
191
eqtrd
⊢
φ
∧
z
∈
0
∧
y
∈
ran
F
→
z
y
I
z
=
0
193
192
sumeq2dv
⊢
φ
∧
z
∈
0
→
∑
y
∈
ran
F
z
y
I
z
=
∑
y
∈
ran
F
0
194
6
adantr
⊢
φ
∧
z
∈
0
→
ran
F
∈
Fin
195
194
olcd
⊢
φ
∧
z
∈
0
→
ran
F
⊆
ℤ
≥
0
∨
ran
F
∈
Fin
196
sumz
⊢
ran
F
⊆
ℤ
≥
0
∨
ran
F
∈
Fin
→
∑
y
∈
ran
F
0
=
0
197
195
196
syl
⊢
φ
∧
z
∈
0
→
∑
y
∈
ran
F
0
=
0
198
193
197
eqtrd
⊢
φ
∧
z
∈
0
→
∑
y
∈
ran
F
z
y
I
z
=
0
199
182
198
sylan2
⊢
φ
∧
z
∈
ran
G
∖
ran
G
∖
0
→
∑
y
∈
ran
F
z
y
I
z
=
0
200
175
178
199
8
fsumss
⊢
φ
→
∑
z
∈
ran
G
∖
0
∑
y
∈
ran
F
z
y
I
z
=
∑
z
∈
ran
G
∑
y
∈
ran
F
z
y
I
z
201
21
adantr
⊢
φ
∧
z
∈
ran
G
∧
y
∈
ran
F
→
z
∈
ℝ
202
201
recnd
⊢
φ
∧
z
∈
ran
G
∧
y
∈
ran
F
→
z
∈
ℂ
203
16
ad2antrr
⊢
φ
∧
z
∈
ran
G
∧
y
∈
ran
F
→
I
:
ℝ
2
⟶
ℝ
204
12
adantr
⊢
φ
∧
z
∈
ran
G
→
ran
F
⊆
ℝ
205
204
sselda
⊢
φ
∧
z
∈
ran
G
∧
y
∈
ran
F
→
y
∈
ℝ
206
203
205
201
fovcdmd
⊢
φ
∧
z
∈
ran
G
∧
y
∈
ran
F
→
y
I
z
∈
ℝ
207
206
recnd
⊢
φ
∧
z
∈
ran
G
∧
y
∈
ran
F
→
y
I
z
∈
ℂ
208
202
207
mulcld
⊢
φ
∧
z
∈
ran
G
∧
y
∈
ran
F
→
z
y
I
z
∈
ℂ
209
208
anasss
⊢
φ
∧
z
∈
ran
G
∧
y
∈
ran
F
→
z
y
I
z
∈
ℂ
210
8
6
209
fsumcom
⊢
φ
→
∑
z
∈
ran
G
∑
y
∈
ran
F
z
y
I
z
=
∑
y
∈
ran
F
∑
z
∈
ran
G
z
y
I
z
211
200
210
eqtrd
⊢
φ
→
∑
z
∈
ran
G
∖
0
∑
y
∈
ran
F
z
y
I
z
=
∑
y
∈
ran
F
∑
z
∈
ran
G
z
y
I
z
212
122
174
211
3eqtrd
⊢
φ
→
∫
1
G
=
∑
y
∈
ran
F
∑
z
∈
ran
G
z
y
I
z
213
120
212
oveq12d
⊢
φ
→
∫
1
F
+
∫
1
G
=
∑
y
∈
ran
F
∑
z
∈
ran
G
y
y
I
z
+
∑
y
∈
ran
F
∑
z
∈
ran
G
z
y
I
z
214
30
37
213
3eqtr4d
⊢
φ
→
∫
1
F
+
f
G
=
∫
1
F
+
∫
1
G