Metamath Proof Explorer


Theorem knoppndvlem15

Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 6-Jul-2021)

Ref Expression
Hypotheses knoppndvlem15.t T=xx+12x
knoppndvlem15.f F=yn0CnT2 Nny
knoppndvlem15.w W=wi0Fwi
knoppndvlem15.a A=2 NJ2 M
knoppndvlem15.b B=2 NJ2M+1
knoppndvlem15.c φC11
knoppndvlem15.j φJ0
knoppndvlem15.m φM
knoppndvlem15.n φN
knoppndvlem15.1 φ1<NC
Assertion knoppndvlem15 φCJ2112 NC1WBWA

Proof

Step Hyp Ref Expression
1 knoppndvlem15.t T=xx+12x
2 knoppndvlem15.f F=yn0CnT2 Nny
3 knoppndvlem15.w W=wi0Fwi
4 knoppndvlem15.a A=2 NJ2 M
5 knoppndvlem15.b B=2 NJ2M+1
6 knoppndvlem15.c φC11
7 knoppndvlem15.j φJ0
8 knoppndvlem15.m φM
9 knoppndvlem15.n φN
10 knoppndvlem15.1 φ1<NC
11 6 knoppndvlem3 φCC<1
12 11 simpld φC
13 12 recnd φC
14 13 abscld φC
15 14 7 reexpcld φCJ
16 2re 2
17 16 a1i φ2
18 2ne0 20
19 18 a1i φ20
20 15 17 19 redivcld φCJ2
21 1red φ1
22 9 nnred φN
23 17 22 remulcld φ2 N
24 23 14 remulcld φ2 NC
25 24 21 resubcld φ2 NC1
26 0red φ0
27 0lt1 0<1
28 27 a1i φ0<1
29 6 9 10 knoppndvlem12 φ2 NC11<2 NC1
30 29 simprd φ1<2 NC1
31 26 21 25 28 30 lttrd φ0<2 NC1
32 25 31 jca φ2 NC10<2 NC1
33 gt0ne0 2 NC10<2 NC12 NC10
34 32 33 syl φ2 NC10
35 21 25 34 redivcld φ12 NC1
36 21 35 resubcld φ112 NC1
37 20 36 remulcld φCJ2112 NC1
38 4 a1i φA=2 NJ2 M
39 7 nn0zd φJ
40 9 39 8 knoppndvlem1 φ2 NJ2 M
41 38 40 eqeltrd φA
42 1 2 9 12 41 7 knoppcnlem3 φFAJ
43 42 recnd φFAJ
44 5 a1i φB=2 NJ2M+1
45 8 peano2zd φM+1
46 9 39 45 knoppndvlem1 φ2 NJ2M+1
47 44 46 eqeltrd φB
48 1 2 9 12 47 7 knoppcnlem3 φFBJ
49 48 recnd φFBJ
50 43 49 subcld φFAJFBJ
51 50 abscld φFAJFBJ
52 1 2 47 12 9 knoppndvlem5 φi=0J1FBi
53 52 recnd φi=0J1FBi
54 1 2 41 12 9 knoppndvlem5 φi=0J1FAi
55 54 recnd φi=0J1FAi
56 53 55 subcld φi=0J1FBii=0J1FAi
57 56 abscld φi=0J1FBii=0J1FAi
58 51 57 resubcld φFAJFBJi=0J1FBii=0J1FAi
59 50 56 subcld φFAJ-FBJ-i=0J1FBii=0J1FAi
60 59 abscld φFAJ-FBJ-i=0J1FBii=0J1FAi
61 20 35 jca φCJ212 NC1
62 remulcl CJ212 NC1CJ212 NC1
63 61 62 syl φCJ212 NC1
64 20 63 jca φCJ2CJ212 NC1
65 resubcl CJ2CJ212 NC1CJ2CJ212 NC1
66 64 65 syl φCJ2CJ212 NC1
67 20 recnd φCJ2
68 1cnd φ1
69 35 recnd φ12 NC1
70 67 68 69 subdid φCJ2112 NC1=CJ21CJ212 NC1
71 67 mulridd φCJ21=CJ2
72 71 oveq1d φCJ21CJ212 NC1=CJ2CJ212 NC1
73 66 leidd φCJ2CJ212 NC1CJ2CJ212 NC1
74 72 73 eqbrtrd φCJ21CJ212 NC1CJ2CJ212 NC1
75 70 74 eqbrtrd φCJ2112 NC1CJ2CJ212 NC1
76 20 35 remulcld φCJ212 NC1
77 20 leidd φCJ2CJ2
78 43 49 abssubd φFAJFBJ=FBJFAJ
79 1 2 4 5 6 7 8 9 knoppndvlem10 φFBJFAJ=CJ2
80 78 79 eqtrd φFAJFBJ=CJ2
81 80 eqcomd φCJ2=FAJFBJ
82 77 81 breqtrd φCJ2FAJFBJ
83 1 2 4 5 6 7 8 9 10 knoppndvlem14 φi=0J1FBii=0J1FAiCJ212 NC1
84 20 57 51 76 82 83 le2subd φCJ2CJ212 NC1FAJFBJi=0J1FBii=0J1FAi
85 37 66 58 75 84 letrd φCJ2112 NC1FAJFBJi=0J1FBii=0J1FAi
86 50 56 abs2difd φFAJFBJi=0J1FBii=0J1FAiFAJ-FBJ-i=0J1FBii=0J1FAi
87 37 58 60 85 86 letrd φCJ2112 NC1FAJ-FBJ-i=0J1FBii=0J1FAi
88 50 56 abssubd φFAJ-FBJ-i=0J1FBii=0J1FAi=i=0J1FBi-i=0J1FAi-FAJFBJ
89 87 88 breqtrd φCJ2112 NC1i=0J1FBi-i=0J1FAi-FAJFBJ
90 1 2 3 5 6 7 45 9 knoppndvlem6 φWB=i=0JFBi
91 elnn0uz J0J0
92 7 91 sylib φJ0
93 9 adantr φi0JN
94 12 adantr φi0JC
95 47 adantr φi0JB
96 elfznn0 i0Ji0
97 96 adantl φi0Ji0
98 1 2 93 94 95 97 knoppcnlem3 φi0JFBi
99 98 recnd φi0JFBi
100 fveq2 i=JFBi=FBJ
101 92 99 100 fsumm1 φi=0JFBi=i=0J1FBi+FBJ
102 90 101 eqtrd φWB=i=0J1FBi+FBJ
103 1 2 3 4 6 7 8 9 knoppndvlem6 φWA=i=0JFAi
104 41 adantr φi0JA
105 1 2 93 94 104 97 knoppcnlem3 φi0JFAi
106 105 recnd φi0JFAi
107 fveq2 i=JFAi=FAJ
108 92 106 107 fsumm1 φi=0JFAi=i=0J1FAi+FAJ
109 103 108 eqtrd φWA=i=0J1FAi+FAJ
110 102 109 oveq12d φWBWA=i=0J1FBi+FBJ-i=0J1FAi+FAJ
111 53 55 43 49 subadd4d φi=0J1FBi-i=0J1FAi-FAJFBJ=i=0J1FBi+FBJ-i=0J1FAi+FAJ
112 111 eqcomd φi=0J1FBi+FBJ-i=0J1FAi+FAJ=i=0J1FBi-i=0J1FAi-FAJFBJ
113 110 112 eqtrd φWBWA=i=0J1FBi-i=0J1FAi-FAJFBJ
114 113 fveq2d φWBWA=i=0J1FBi-i=0J1FAi-FAJFBJ
115 114 eqcomd φi=0J1FBi-i=0J1FAi-FAJFBJ=WBWA
116 89 115 breqtrd φCJ2112 NC1WBWA