| Step | Hyp | Ref | Expression | 
						
							| 1 |  | limciccioolb.1 |  | 
						
							| 2 |  | limciccioolb.2 |  | 
						
							| 3 |  | limciccioolb.3 |  | 
						
							| 4 |  | limciccioolb.4 |  | 
						
							| 5 |  | ioossicc |  | 
						
							| 6 | 5 | a1i |  | 
						
							| 7 | 1 2 | iccssred |  | 
						
							| 8 |  | ax-resscn |  | 
						
							| 9 | 7 8 | sstrdi |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 |  | retop |  | 
						
							| 13 | 12 | a1i |  | 
						
							| 14 | 2 | rexrd |  | 
						
							| 15 |  | icossre |  | 
						
							| 16 | 1 14 15 | syl2anc |  | 
						
							| 17 |  | difssd |  | 
						
							| 18 | 16 17 | unssd |  | 
						
							| 19 |  | uniretop |  | 
						
							| 20 | 18 19 | sseqtrdi |  | 
						
							| 21 |  | elioore |  | 
						
							| 22 | 21 | ad2antlr |  | 
						
							| 23 |  | simpr |  | 
						
							| 24 |  | simpr |  | 
						
							| 25 |  | mnfxr |  | 
						
							| 26 | 25 | a1i |  | 
						
							| 27 | 14 | adantr |  | 
						
							| 28 |  | elioo2 |  | 
						
							| 29 | 26 27 28 | syl2anc |  | 
						
							| 30 | 24 29 | mpbid |  | 
						
							| 31 | 30 | simp3d |  | 
						
							| 32 | 31 | adantr |  | 
						
							| 33 | 1 | ad2antrr |  | 
						
							| 34 | 14 | ad2antrr |  | 
						
							| 35 |  | elico2 |  | 
						
							| 36 | 33 34 35 | syl2anc |  | 
						
							| 37 | 22 23 32 36 | mpbir3and |  | 
						
							| 38 | 37 | orcd |  | 
						
							| 39 | 21 | ad2antlr |  | 
						
							| 40 |  | simpr |  | 
						
							| 41 | 40 | intnanrd |  | 
						
							| 42 | 1 | rexrd |  | 
						
							| 43 | 42 | ad2antrr |  | 
						
							| 44 | 14 | ad2antrr |  | 
						
							| 45 | 39 | rexrd |  | 
						
							| 46 |  | elicc4 |  | 
						
							| 47 | 43 44 45 46 | syl3anc |  | 
						
							| 48 | 41 47 | mtbird |  | 
						
							| 49 | 39 48 | eldifd |  | 
						
							| 50 | 49 | olcd |  | 
						
							| 51 | 38 50 | pm2.61dan |  | 
						
							| 52 |  | elun |  | 
						
							| 53 | 51 52 | sylibr |  | 
						
							| 54 | 53 | ralrimiva |  | 
						
							| 55 |  | dfss3 |  | 
						
							| 56 | 54 55 | sylibr |  | 
						
							| 57 |  | eqid |  | 
						
							| 58 | 57 | ntrss |  | 
						
							| 59 | 13 20 56 58 | syl3anc |  | 
						
							| 60 | 25 | a1i |  | 
						
							| 61 | 1 | mnfltd |  | 
						
							| 62 | 60 14 1 61 3 | eliood |  | 
						
							| 63 |  | iooretop |  | 
						
							| 64 | 63 | a1i |  | 
						
							| 65 |  | isopn3i |  | 
						
							| 66 | 13 64 65 | syl2anc |  | 
						
							| 67 | 62 66 | eleqtrrd |  | 
						
							| 68 | 59 67 | sseldd |  | 
						
							| 69 | 1 | leidd |  | 
						
							| 70 | 1 2 3 | ltled |  | 
						
							| 71 | 1 2 1 69 70 | eliccd |  | 
						
							| 72 | 68 71 | elind |  | 
						
							| 73 |  | icossicc |  | 
						
							| 74 | 73 | a1i |  | 
						
							| 75 |  | eqid |  | 
						
							| 76 | 19 75 | restntr |  | 
						
							| 77 | 13 7 74 76 | syl3anc |  | 
						
							| 78 | 72 77 | eleqtrrd |  | 
						
							| 79 |  | eqid |  | 
						
							| 80 | 10 79 | rerest |  | 
						
							| 81 | 7 80 | syl |  | 
						
							| 82 | 81 | eqcomd |  | 
						
							| 83 | 82 | fveq2d |  | 
						
							| 84 | 83 | fveq1d |  | 
						
							| 85 | 78 84 | eleqtrd |  | 
						
							| 86 | 71 | snssd |  | 
						
							| 87 |  | ssequn2 |  | 
						
							| 88 | 86 87 | sylib |  | 
						
							| 89 | 88 | eqcomd |  | 
						
							| 90 | 89 | oveq2d |  | 
						
							| 91 | 90 | fveq2d |  | 
						
							| 92 |  | uncom |  | 
						
							| 93 |  | snunioo |  | 
						
							| 94 | 42 14 3 93 | syl3anc |  | 
						
							| 95 | 92 94 | eqtr2id |  | 
						
							| 96 | 91 95 | fveq12d |  | 
						
							| 97 | 85 96 | eleqtrd |  | 
						
							| 98 | 4 6 9 10 11 97 | limcres |  |