Metamath Proof Explorer


Theorem limsupmnflem

Description: The superior limit of a function is -oo if and only if every real number is the upper bound of the restriction of the function to an upper interval of real numbers. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupmnflem.a φ A
limsupmnflem.f φ F : A *
limsupmnflem.g G = k sup F k +∞ * <
Assertion limsupmnflem φ lim sup F = −∞ x k j A k j F j x

Proof

Step Hyp Ref Expression
1 limsupmnflem.a φ A
2 limsupmnflem.f φ F : A *
3 limsupmnflem.g G = k sup F k +∞ * <
4 nfv k φ
5 reex V
6 5 a1i φ V
7 6 1 ssexd φ A V
8 4 7 2 3 limsupval3 φ lim sup F = sup ran G * <
9 3 rneqi ran G = ran k sup F k +∞ * <
10 9 infeq1i sup ran G * < = sup ran k sup F k +∞ * < * <
11 10 a1i φ sup ran G * < = sup ran k sup F k +∞ * < * <
12 8 11 eqtrd φ lim sup F = sup ran k sup F k +∞ * < * <
13 12 eqeq1d φ lim sup F = −∞ sup ran k sup F k +∞ * < * < = −∞
14 nfv x φ
15 2 fimassd φ F k +∞ *
16 15 adantr φ k F k +∞ *
17 16 supxrcld φ k sup F k +∞ * < *
18 4 14 17 infxrunb3rnmpt φ x k sup F k +∞ * < x sup ran k sup F k +∞ * < * < = −∞
19 15 adantr φ x F k +∞ *
20 ressxr *
21 20 a1i φ *
22 21 sselda φ x x *
23 supxrleub F k +∞ * x * sup F k +∞ * < x y F k +∞ y x
24 19 22 23 syl2anc φ x sup F k +∞ * < x y F k +∞ y x
25 24 adantr φ x k sup F k +∞ * < x y F k +∞ y x
26 2 ffnd φ F Fn A
27 26 ad3antrrr φ k j A k j F Fn A
28 simplr φ k j A k j j A
29 20 sseli k k *
30 29 ad3antlr φ k j A k j k *
31 pnfxr +∞ *
32 31 a1i φ k j A k j +∞ *
33 20 a1i φ j A *
34 1 sselda φ j A j
35 33 34 sseldd φ j A j *
36 35 ad4ant13 φ k j A k j j *
37 simpr φ k j A k j k j
38 34 ltpnfd φ j A j < +∞
39 38 ad4ant13 φ k j A k j j < +∞
40 30 32 36 37 39 elicod φ k j A k j j k +∞
41 27 28 40 fnfvimad φ k j A k j F j F k +∞
42 41 adantllr φ k y F k +∞ y x j A k j F j F k +∞
43 simpllr φ k y F k +∞ y x j A k j y F k +∞ y x
44 breq1 y = F j y x F j x
45 44 rspcva F j F k +∞ y F k +∞ y x F j x
46 42 43 45 syl2anc φ k y F k +∞ y x j A k j F j x
47 46 adantl4r φ x k y F k +∞ y x j A k j F j x
48 47 ex φ x k y F k +∞ y x j A k j F j x
49 48 ralrimiva φ x k y F k +∞ y x j A k j F j x
50 49 ex φ x k y F k +∞ y x j A k j F j x
51 nfcv _ j F
52 26 adantr φ y F k +∞ F Fn A
53 simpr φ y F k +∞ y F k +∞
54 51 52 53 fvelimad φ y F k +∞ j A k +∞ F j = y
55 54 ad4ant14 φ k j A k j F j x y F k +∞ j A k +∞ F j = y
56 nfv j φ k
57 nfra1 j j A k j F j x
58 56 57 nfan j φ k j A k j F j x
59 nfv j y x
60 29 adantr k j A k +∞ k *
61 31 a1i k j A k +∞ +∞ *
62 elinel2 j A k +∞ j k +∞
63 62 adantl k j A k +∞ j k +∞
64 60 61 63 icogelbd k j A k +∞ k j
65 64 adantlr k j A k j F j x j A k +∞ k j
66 elinel1 j A k +∞ j A
67 66 adantl j A k j F j x j A k +∞ j A
68 rspa j A k j F j x j A k j F j x
69 67 68 syldan j A k j F j x j A k +∞ k j F j x
70 69 adantll k j A k j F j x j A k +∞ k j F j x
71 65 70 mpd k j A k j F j x j A k +∞ F j x
72 id F j = y F j = y
73 72 eqcomd F j = y y = F j
74 73 adantl F j x F j = y y = F j
75 simpl F j x F j = y F j x
76 74 75 eqbrtrd F j x F j = y y x
77 76 ex F j x F j = y y x
78 71 77 syl k j A k j F j x j A k +∞ F j = y y x
79 78 adantlll φ k j A k j F j x j A k +∞ F j = y y x
80 79 ex φ k j A k j F j x j A k +∞ F j = y y x
81 58 59 80 rexlimd φ k j A k j F j x j A k +∞ F j = y y x
82 81 imp φ k j A k j F j x j A k +∞ F j = y y x
83 55 82 syldan φ k j A k j F j x y F k +∞ y x
84 83 ralrimiva φ k j A k j F j x y F k +∞ y x
85 84 adantllr φ x k j A k j F j x y F k +∞ y x
86 24 ad2antrr φ x k j A k j F j x sup F k +∞ * < x y F k +∞ y x
87 85 86 mpbird φ x k j A k j F j x sup F k +∞ * < x
88 87 ex φ x k j A k j F j x sup F k +∞ * < x
89 88 25 sylibd φ x k j A k j F j x y F k +∞ y x
90 50 89 impbid φ x k y F k +∞ y x j A k j F j x
91 25 90 bitrd φ x k sup F k +∞ * < x j A k j F j x
92 91 rexbidva φ x k sup F k +∞ * < x k j A k j F j x
93 92 ralbidva φ x k sup F k +∞ * < x x k j A k j F j x
94 13 18 93 3bitr2d φ lim sup F = −∞ x k j A k j F j x