Metamath Proof Explorer


Theorem limsupmnflem

Description: The superior limit of a function is -oo if and only if every real number is the upper bound of the restriction of the function to an upper interval of real numbers. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupmnflem.a φA
limsupmnflem.f φF:A*
limsupmnflem.g G=ksupFk+∞*<
Assertion limsupmnflem φlim supF=−∞xkjAkjFjx

Proof

Step Hyp Ref Expression
1 limsupmnflem.a φA
2 limsupmnflem.f φF:A*
3 limsupmnflem.g G=ksupFk+∞*<
4 nfv kφ
5 reex V
6 5 a1i φV
7 6 1 ssexd φAV
8 4 7 2 3 limsupval3 φlim supF=supranG*<
9 3 rneqi ranG=ranksupFk+∞*<
10 9 infeq1i supranG*<=supranksupFk+∞*<*<
11 10 a1i φsupranG*<=supranksupFk+∞*<*<
12 8 11 eqtrd φlim supF=supranksupFk+∞*<*<
13 12 eqeq1d φlim supF=−∞supranksupFk+∞*<*<=−∞
14 nfv xφ
15 2 fimassd φFk+∞*
16 15 adantr φkFk+∞*
17 16 supxrcld φksupFk+∞*<*
18 4 14 17 infxrunb3rnmpt φxksupFk+∞*<xsupranksupFk+∞*<*<=−∞
19 15 adantr φxFk+∞*
20 ressxr *
21 20 a1i φ*
22 21 sselda φxx*
23 supxrleub Fk+∞*x*supFk+∞*<xyFk+∞yx
24 19 22 23 syl2anc φxsupFk+∞*<xyFk+∞yx
25 24 adantr φxksupFk+∞*<xyFk+∞yx
26 2 ffnd φFFnA
27 26 ad3antrrr φkjAkjFFnA
28 simplr φkjAkjjA
29 20 sseli kk*
30 29 ad3antlr φkjAkjk*
31 pnfxr +∞*
32 31 a1i φkjAkj+∞*
33 20 a1i φjA*
34 1 sselda φjAj
35 33 34 sseldd φjAj*
36 35 ad4ant13 φkjAkjj*
37 simpr φkjAkjkj
38 34 ltpnfd φjAj<+∞
39 38 ad4ant13 φkjAkjj<+∞
40 30 32 36 37 39 elicod φkjAkjjk+∞
41 27 28 40 fnfvimad φkjAkjFjFk+∞
42 41 adantllr φkyFk+∞yxjAkjFjFk+∞
43 simpllr φkyFk+∞yxjAkjyFk+∞yx
44 breq1 y=FjyxFjx
45 44 rspcva FjFk+∞yFk+∞yxFjx
46 42 43 45 syl2anc φkyFk+∞yxjAkjFjx
47 46 adantl4r φxkyFk+∞yxjAkjFjx
48 47 ex φxkyFk+∞yxjAkjFjx
49 48 ralrimiva φxkyFk+∞yxjAkjFjx
50 49 ex φxkyFk+∞yxjAkjFjx
51 nfcv _jF
52 26 adantr φyFk+∞FFnA
53 simpr φyFk+∞yFk+∞
54 51 52 53 fvelimad φyFk+∞jAk+∞Fj=y
55 54 ad4ant14 φkjAkjFjxyFk+∞jAk+∞Fj=y
56 nfv jφk
57 nfra1 jjAkjFjx
58 56 57 nfan jφkjAkjFjx
59 nfv jyx
60 29 adantr kjAk+∞k*
61 31 a1i kjAk+∞+∞*
62 elinel2 jAk+∞jk+∞
63 62 adantl kjAk+∞jk+∞
64 60 61 63 icogelbd kjAk+∞kj
65 64 adantlr kjAkjFjxjAk+∞kj
66 elinel1 jAk+∞jA
67 66 adantl jAkjFjxjAk+∞jA
68 rspa jAkjFjxjAkjFjx
69 67 68 syldan jAkjFjxjAk+∞kjFjx
70 69 adantll kjAkjFjxjAk+∞kjFjx
71 65 70 mpd kjAkjFjxjAk+∞Fjx
72 id Fj=yFj=y
73 72 eqcomd Fj=yy=Fj
74 73 adantl FjxFj=yy=Fj
75 simpl FjxFj=yFjx
76 74 75 eqbrtrd FjxFj=yyx
77 76 ex FjxFj=yyx
78 71 77 syl kjAkjFjxjAk+∞Fj=yyx
79 78 adantlll φkjAkjFjxjAk+∞Fj=yyx
80 79 ex φkjAkjFjxjAk+∞Fj=yyx
81 58 59 80 rexlimd φkjAkjFjxjAk+∞Fj=yyx
82 81 imp φkjAkjFjxjAk+∞Fj=yyx
83 55 82 syldan φkjAkjFjxyFk+∞yx
84 83 ralrimiva φkjAkjFjxyFk+∞yx
85 84 adantllr φxkjAkjFjxyFk+∞yx
86 24 ad2antrr φxkjAkjFjxsupFk+∞*<xyFk+∞yx
87 85 86 mpbird φxkjAkjFjxsupFk+∞*<x
88 87 ex φxkjAkjFjxsupFk+∞*<x
89 88 25 sylibd φxkjAkjFjxyFk+∞yx
90 50 89 impbid φxkyFk+∞yxjAkjFjx
91 25 90 bitrd φxksupFk+∞*<xjAkjFjx
92 91 rexbidva φxksupFk+∞*<xkjAkjFjx
93 92 ralbidva φxksupFk+∞*<xxkjAkjFjx
94 13 18 93 3bitr2d φlim supF=−∞xkjAkjFjx