Metamath Proof Explorer


Theorem mapdpglem30

Description: Lemma for mapdpg . Baer p. 45 line 18: "Hence we deduce (from mapdpglem28 , using lvecindp2 ) that v = 1 and v = u...". TODO: would it be shorter to have only the v = ( 1rA ) part and use mapdpglem28.u2 in mapdpglem31 ? (Contributed by NM, 22-Mar-2015)

Ref Expression
Hypotheses mapdpg.h H=LHypK
mapdpg.m M=mapdKW
mapdpg.u U=DVecHKW
mapdpg.v V=BaseU
mapdpg.s -˙=-U
mapdpg.z 0˙=0U
mapdpg.n N=LSpanU
mapdpg.c C=LCDualKW
mapdpg.f F=BaseC
mapdpg.r R=-C
mapdpg.j J=LSpanC
mapdpg.k φKHLWH
mapdpg.x φXV0˙
mapdpg.y φYV0˙
mapdpg.g φGF
mapdpg.ne φNXNY
mapdpg.e φMNX=JG
mapdpgem25.h1 φhFMNY=JhMNX-˙Y=JGRh
mapdpgem25.i1 φiFMNY=JiMNX-˙Y=JGRi
mapdpglem26.a A=ScalarU
mapdpglem26.b B=BaseA
mapdpglem26.t ·˙=C
mapdpglem26.o O=0A
mapdpglem28.ve φvB
mapdpglem28.u1 φh=u·˙i
mapdpglem28.u2 φGRh=v·˙GRi
mapdpglem28.ue φuB
Assertion mapdpglem30 φv=1Av=u

Proof

Step Hyp Ref Expression
1 mapdpg.h H=LHypK
2 mapdpg.m M=mapdKW
3 mapdpg.u U=DVecHKW
4 mapdpg.v V=BaseU
5 mapdpg.s -˙=-U
6 mapdpg.z 0˙=0U
7 mapdpg.n N=LSpanU
8 mapdpg.c C=LCDualKW
9 mapdpg.f F=BaseC
10 mapdpg.r R=-C
11 mapdpg.j J=LSpanC
12 mapdpg.k φKHLWH
13 mapdpg.x φXV0˙
14 mapdpg.y φYV0˙
15 mapdpg.g φGF
16 mapdpg.ne φNXNY
17 mapdpg.e φMNX=JG
18 mapdpgem25.h1 φhFMNY=JhMNX-˙Y=JGRh
19 mapdpgem25.i1 φiFMNY=JiMNX-˙Y=JGRi
20 mapdpglem26.a A=ScalarU
21 mapdpglem26.b B=BaseA
22 mapdpglem26.t ·˙=C
23 mapdpglem26.o O=0A
24 mapdpglem28.ve φvB
25 mapdpglem28.u1 φh=u·˙i
26 mapdpglem28.u2 φGRh=v·˙GRi
27 mapdpglem28.ue φuB
28 eqid +C=+C
29 eqid ScalarC=ScalarC
30 eqid BaseScalarC=BaseScalarC
31 eqid 0C=0C
32 1 8 12 lcdlvec φCLVec
33 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 mapdpglem30a φG0C
34 eldifsn GF0CGFG0C
35 15 33 34 sylanbrc φGF0C
36 19 simpld φiF
37 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 mapdpglem30b φi0C
38 eldifsn iF0CiFi0C
39 36 37 38 sylanbrc φiF0C
40 1 3 20 21 8 29 30 12 lcdsbase φBaseScalarC=B
41 24 40 eleqtrrd φvBaseScalarC
42 1 3 12 dvhlmod φULMod
43 20 lmodring ULModARing
44 42 43 syl φARing
45 ringgrp ARingAGrp
46 44 45 syl φAGrp
47 eqid 1A=1A
48 21 47 ringidcl ARing1AB
49 44 48 syl φ1AB
50 eqid invgA=invgA
51 21 50 grpinvcl AGrp1ABinvgA1AB
52 46 49 51 syl2anc φinvgA1AB
53 eqid A=A
54 21 53 ringcl ARingvBinvgA1ABvAinvgA1AB
55 44 24 52 54 syl3anc φvAinvgA1AB
56 55 40 eleqtrrd φvAinvgA1ABaseScalarC
57 49 40 eleqtrrd φ1ABaseScalarC
58 21 53 ringcl ARinguBinvgA1ABuAinvgA1AB
59 44 27 52 58 syl3anc φuAinvgA1AB
60 59 40 eleqtrrd φuAinvgA1ABaseScalarC
61 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 mapdpglem29 φJGJi
62 1 3 20 21 53 8 9 22 12 52 27 36 lcdvsass φuAinvgA1A·˙i=invgA1A·˙u·˙i
63 62 oveq2d φ1A·˙G+CuAinvgA1A·˙i=1A·˙G+CinvgA1A·˙u·˙i
64 1 3 20 21 8 9 22 12 49 15 lcdvscl φ1A·˙GF
65 1 3 20 21 8 9 22 12 27 36 lcdvscl φu·˙iF
66 1 3 20 50 47 8 9 28 22 10 12 64 65 lcdvsub φ1A·˙GRu·˙i=1A·˙G+CinvgA1A·˙u·˙i
67 1 3 20 21 53 8 9 22 12 52 24 36 lcdvsass φvAinvgA1A·˙i=invgA1A·˙v·˙i
68 67 oveq2d φv·˙G+CvAinvgA1A·˙i=v·˙G+CinvgA1A·˙v·˙i
69 1 3 20 21 8 9 22 12 24 15 lcdvscl φv·˙GF
70 1 3 20 21 8 9 22 12 24 36 lcdvscl φv·˙iF
71 1 3 20 50 47 8 9 28 22 10 12 69 70 lcdvsub φv·˙GRv·˙i=v·˙G+CinvgA1A·˙v·˙i
72 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 mapdpglem28 φv·˙GRv·˙i=GRu·˙i
73 eqid 1ScalarC=1ScalarC
74 1 3 20 47 8 29 73 12 lcd1 φ1ScalarC=1A
75 74 oveq1d φ1ScalarC·˙G=1A·˙G
76 1 8 12 lcdlmod φCLMod
77 9 29 22 73 lmodvs1 CLModGF1ScalarC·˙G=G
78 76 15 77 syl2anc φ1ScalarC·˙G=G
79 75 78 eqtr3d φ1A·˙G=G
80 79 oveq1d φ1A·˙GRu·˙i=GRu·˙i
81 72 80 eqtr4d φv·˙GRv·˙i=1A·˙GRu·˙i
82 68 71 81 3eqtr2rd φ1A·˙GRu·˙i=v·˙G+CvAinvgA1A·˙i
83 63 66 82 3eqtr2rd φv·˙G+CvAinvgA1A·˙i=1A·˙G+CuAinvgA1A·˙i
84 9 28 29 30 22 31 11 32 35 39 41 56 57 60 61 83 lvecindp2 φv=1AvAinvgA1A=uAinvgA1A
85 21 53 47 50 44 24 ringnegr φvAinvgA1A=invgAv
86 21 53 47 50 44 27 ringnegr φuAinvgA1A=invgAu
87 85 86 eqeq12d φvAinvgA1A=uAinvgA1AinvgAv=invgAu
88 21 50 46 24 27 grpinv11 φinvgAv=invgAuv=u
89 87 88 bitrd φvAinvgA1A=uAinvgA1Av=u
90 89 anbi2d φv=1AvAinvgA1A=uAinvgA1Av=1Av=u
91 84 90 mpbid φv=1Av=u