| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdetfval.d |
|
| 2 |
|
mdetfval.a |
|
| 3 |
|
mdetfval.b |
|
| 4 |
|
mdetfval.p |
|
| 5 |
|
mdetfval.y |
|
| 6 |
|
mdetfval.s |
|
| 7 |
|
mdetfval.t |
|
| 8 |
|
mdetfval.u |
|
| 9 |
1 2 3 4 5 6 7 8
|
mdetleib |
|
| 10 |
9
|
adantl |
|
| 11 |
|
eqid |
|
| 12 |
|
crngring |
|
| 13 |
|
ringcmn |
|
| 14 |
12 13
|
syl |
|
| 15 |
14
|
adantr |
|
| 16 |
2 3
|
matrcl |
|
| 17 |
16
|
adantl |
|
| 18 |
17
|
simpld |
|
| 19 |
|
eqid |
|
| 20 |
19 4
|
symgbasfi |
|
| 21 |
18 20
|
syl |
|
| 22 |
12
|
ad2antrr |
|
| 23 |
5 6
|
coeq12i |
|
| 24 |
|
zrhpsgnmhm |
|
| 25 |
23 24
|
eqeltrid |
|
| 26 |
12 18 25
|
syl2an2r |
|
| 27 |
|
eqid |
|
| 28 |
27 11
|
mgpbas |
|
| 29 |
4 28
|
mhmf |
|
| 30 |
26 29
|
syl |
|
| 31 |
30
|
ffvelcdmda |
|
| 32 |
8 11
|
mgpbas |
|
| 33 |
8
|
crngmgp |
|
| 34 |
33
|
ad2antrr |
|
| 35 |
18
|
adantr |
|
| 36 |
|
simpr |
|
| 37 |
2 11 3
|
matbas2i |
|
| 38 |
|
elmapi |
|
| 39 |
36 37 38
|
3syl |
|
| 40 |
39
|
ad2antrr |
|
| 41 |
19 4
|
symgbasf1o |
|
| 42 |
41
|
adantl |
|
| 43 |
|
f1of |
|
| 44 |
42 43
|
syl |
|
| 45 |
44
|
ffvelcdmda |
|
| 46 |
|
simpr |
|
| 47 |
40 45 46
|
fovcdmd |
|
| 48 |
47
|
ralrimiva |
|
| 49 |
32 34 35 48
|
gsummptcl |
|
| 50 |
11 7
|
ringcl |
|
| 51 |
22 31 49 50
|
syl3anc |
|
| 52 |
51
|
ralrimiva |
|
| 53 |
|
eqid |
|
| 54 |
|
eqid |
|
| 55 |
19
|
symggrp |
|
| 56 |
18 55
|
syl |
|
| 57 |
4 54 56
|
grpinvf1o |
|
| 58 |
11 15 21 52 53 57
|
gsummptfif1o |
|
| 59 |
|
f1of |
|
| 60 |
57 59
|
syl |
|
| 61 |
60
|
ffvelcdmda |
|
| 62 |
60
|
feqmptd |
|
| 63 |
|
eqidd |
|
| 64 |
|
fveq2 |
|
| 65 |
|
fveq1 |
|
| 66 |
65
|
oveq1d |
|
| 67 |
66
|
mpteq2dv |
|
| 68 |
67
|
oveq2d |
|
| 69 |
64 68
|
oveq12d |
|
| 70 |
61 62 63 69
|
fmptco |
|
| 71 |
19 4 54
|
symginv |
|
| 72 |
71
|
adantl |
|
| 73 |
72
|
fveq2d |
|
| 74 |
12
|
ad2antrr |
|
| 75 |
18
|
adantr |
|
| 76 |
|
simpr |
|
| 77 |
4 5 6
|
zrhpsgninv |
|
| 78 |
74 75 76 77
|
syl3anc |
|
| 79 |
73 78
|
eqtrd |
|
| 80 |
|
eqid |
|
| 81 |
33
|
ad2antrr |
|
| 82 |
39
|
ad2antrr |
|
| 83 |
71
|
ad2antlr |
|
| 84 |
83
|
fveq1d |
|
| 85 |
19 4
|
symgbasf1o |
|
| 86 |
85
|
adantl |
|
| 87 |
|
f1ocnv |
|
| 88 |
|
f1of |
|
| 89 |
86 87 88
|
3syl |
|
| 90 |
89
|
ffvelcdmda |
|
| 91 |
84 90
|
eqeltrd |
|
| 92 |
|
simpr |
|
| 93 |
82 91 92
|
fovcdmd |
|
| 94 |
93 32
|
eleqtrdi |
|
| 95 |
94
|
ralrimiva |
|
| 96 |
|
eqid |
|
| 97 |
80 81 75 95 96 86
|
gsummptfif1o |
|
| 98 |
|
f1of |
|
| 99 |
86 98
|
syl |
|
| 100 |
99
|
ffvelcdmda |
|
| 101 |
99
|
feqmptd |
|
| 102 |
|
eqidd |
|
| 103 |
|
fveq2 |
|
| 104 |
|
id |
|
| 105 |
103 104
|
oveq12d |
|
| 106 |
100 101 102 105
|
fmptco |
|
| 107 |
71
|
ad2antlr |
|
| 108 |
107
|
fveq1d |
|
| 109 |
|
f1ocnvfv1 |
|
| 110 |
86 109
|
sylan |
|
| 111 |
108 110
|
eqtrd |
|
| 112 |
111
|
oveq1d |
|
| 113 |
112
|
mpteq2dva |
|
| 114 |
106 113
|
eqtrd |
|
| 115 |
114
|
oveq2d |
|
| 116 |
97 115
|
eqtrd |
|
| 117 |
79 116
|
oveq12d |
|
| 118 |
117
|
mpteq2dva |
|
| 119 |
70 118
|
eqtrd |
|
| 120 |
119
|
oveq2d |
|
| 121 |
10 58 120
|
3eqtrd |
|