Metamath Proof Explorer


Theorem mdetleib2

Description: Leibniz' formula can also be expanded by rows. (Contributed by Stefan O'Rear, 9-Jul-2018) (Proof shortened by AV, 23-Jul-2019)

Ref Expression
Hypotheses mdetfval.d D=NmaDetR
mdetfval.a A=NMatR
mdetfval.b B=BaseA
mdetfval.p P=BaseSymGrpN
mdetfval.y Y=ℤRHomR
mdetfval.s S=pmSgnN
mdetfval.t ·˙=R
mdetfval.u U=mulGrpR
Assertion mdetleib2 RCRingMBDM=RpPYSp·˙UxNxMpx

Proof

Step Hyp Ref Expression
1 mdetfval.d D=NmaDetR
2 mdetfval.a A=NMatR
3 mdetfval.b B=BaseA
4 mdetfval.p P=BaseSymGrpN
5 mdetfval.y Y=ℤRHomR
6 mdetfval.s S=pmSgnN
7 mdetfval.t ·˙=R
8 mdetfval.u U=mulGrpR
9 1 2 3 4 5 6 7 8 mdetleib MBDM=RqPYSq·˙UyNqyMy
10 9 adantl RCRingMBDM=RqPYSq·˙UyNqyMy
11 eqid BaseR=BaseR
12 crngring RCRingRRing
13 ringcmn RRingRCMnd
14 12 13 syl RCRingRCMnd
15 14 adantr RCRingMBRCMnd
16 2 3 matrcl MBNFinRV
17 16 adantl RCRingMBNFinRV
18 17 simpld RCRingMBNFin
19 eqid SymGrpN=SymGrpN
20 19 4 symgbasfi NFinPFin
21 18 20 syl RCRingMBPFin
22 12 ad2antrr RCRingMBqPRRing
23 5 6 coeq12i YS=ℤRHomRpmSgnN
24 zrhpsgnmhm RRingNFinℤRHomRpmSgnNSymGrpNMndHommulGrpR
25 23 24 eqeltrid RRingNFinYSSymGrpNMndHommulGrpR
26 12 18 25 syl2an2r RCRingMBYSSymGrpNMndHommulGrpR
27 eqid mulGrpR=mulGrpR
28 27 11 mgpbas BaseR=BasemulGrpR
29 4 28 mhmf YSSymGrpNMndHommulGrpRYS:PBaseR
30 26 29 syl RCRingMBYS:PBaseR
31 30 ffvelcdmda RCRingMBqPYSqBaseR
32 8 11 mgpbas BaseR=BaseU
33 8 crngmgp RCRingUCMnd
34 33 ad2antrr RCRingMBqPUCMnd
35 18 adantr RCRingMBqPNFin
36 simpr RCRingMBMB
37 2 11 3 matbas2i MBMBaseRN×N
38 elmapi MBaseRN×NM:N×NBaseR
39 36 37 38 3syl RCRingMBM:N×NBaseR
40 39 ad2antrr RCRingMBqPyNM:N×NBaseR
41 19 4 symgbasf1o qPq:N1-1 ontoN
42 41 adantl RCRingMBqPq:N1-1 ontoN
43 f1of q:N1-1 ontoNq:NN
44 42 43 syl RCRingMBqPq:NN
45 44 ffvelcdmda RCRingMBqPyNqyN
46 simpr RCRingMBqPyNyN
47 40 45 46 fovcdmd RCRingMBqPyNqyMyBaseR
48 47 ralrimiva RCRingMBqPyNqyMyBaseR
49 32 34 35 48 gsummptcl RCRingMBqPUyNqyMyBaseR
50 11 7 ringcl RRingYSqBaseRUyNqyMyBaseRYSq·˙UyNqyMyBaseR
51 22 31 49 50 syl3anc RCRingMBqPYSq·˙UyNqyMyBaseR
52 51 ralrimiva RCRingMBqPYSq·˙UyNqyMyBaseR
53 eqid qPYSq·˙UyNqyMy=qPYSq·˙UyNqyMy
54 eqid invgSymGrpN=invgSymGrpN
55 19 symggrp NFinSymGrpNGrp
56 18 55 syl RCRingMBSymGrpNGrp
57 4 54 56 grpinvf1o RCRingMBinvgSymGrpN:P1-1 ontoP
58 11 15 21 52 53 57 gsummptfif1o RCRingMBRqPYSq·˙UyNqyMy=RqPYSq·˙UyNqyMyinvgSymGrpN
59 f1of invgSymGrpN:P1-1 ontoPinvgSymGrpN:PP
60 57 59 syl RCRingMBinvgSymGrpN:PP
61 60 ffvelcdmda RCRingMBpPinvgSymGrpNpP
62 60 feqmptd RCRingMBinvgSymGrpN=pPinvgSymGrpNp
63 eqidd RCRingMBqPYSq·˙UyNqyMy=qPYSq·˙UyNqyMy
64 fveq2 q=invgSymGrpNpYSq=YSinvgSymGrpNp
65 fveq1 q=invgSymGrpNpqy=invgSymGrpNpy
66 65 oveq1d q=invgSymGrpNpqyMy=invgSymGrpNpyMy
67 66 mpteq2dv q=invgSymGrpNpyNqyMy=yNinvgSymGrpNpyMy
68 67 oveq2d q=invgSymGrpNpUyNqyMy=UyNinvgSymGrpNpyMy
69 64 68 oveq12d q=invgSymGrpNpYSq·˙UyNqyMy=YSinvgSymGrpNp·˙UyNinvgSymGrpNpyMy
70 61 62 63 69 fmptco RCRingMBqPYSq·˙UyNqyMyinvgSymGrpN=pPYSinvgSymGrpNp·˙UyNinvgSymGrpNpyMy
71 19 4 54 symginv pPinvgSymGrpNp=p-1
72 71 adantl RCRingMBpPinvgSymGrpNp=p-1
73 72 fveq2d RCRingMBpPYSinvgSymGrpNp=YSp-1
74 12 ad2antrr RCRingMBpPRRing
75 18 adantr RCRingMBpPNFin
76 simpr RCRingMBpPpP
77 4 5 6 zrhpsgninv RRingNFinpPYSp-1=YSp
78 74 75 76 77 syl3anc RCRingMBpPYSp-1=YSp
79 73 78 eqtrd RCRingMBpPYSinvgSymGrpNp=YSp
80 eqid BaseU=BaseU
81 33 ad2antrr RCRingMBpPUCMnd
82 39 ad2antrr RCRingMBpPyNM:N×NBaseR
83 71 ad2antlr RCRingMBpPyNinvgSymGrpNp=p-1
84 83 fveq1d RCRingMBpPyNinvgSymGrpNpy=p-1y
85 19 4 symgbasf1o pPp:N1-1 ontoN
86 85 adantl RCRingMBpPp:N1-1 ontoN
87 f1ocnv p:N1-1 ontoNp-1:N1-1 ontoN
88 f1of p-1:N1-1 ontoNp-1:NN
89 86 87 88 3syl RCRingMBpPp-1:NN
90 89 ffvelcdmda RCRingMBpPyNp-1yN
91 84 90 eqeltrd RCRingMBpPyNinvgSymGrpNpyN
92 simpr RCRingMBpPyNyN
93 82 91 92 fovcdmd RCRingMBpPyNinvgSymGrpNpyMyBaseR
94 93 32 eleqtrdi RCRingMBpPyNinvgSymGrpNpyMyBaseU
95 94 ralrimiva RCRingMBpPyNinvgSymGrpNpyMyBaseU
96 eqid yNinvgSymGrpNpyMy=yNinvgSymGrpNpyMy
97 80 81 75 95 96 86 gsummptfif1o RCRingMBpPUyNinvgSymGrpNpyMy=UyNinvgSymGrpNpyMyp
98 f1of p:N1-1 ontoNp:NN
99 86 98 syl RCRingMBpPp:NN
100 99 ffvelcdmda RCRingMBpPxNpxN
101 99 feqmptd RCRingMBpPp=xNpx
102 eqidd RCRingMBpPyNinvgSymGrpNpyMy=yNinvgSymGrpNpyMy
103 fveq2 y=pxinvgSymGrpNpy=invgSymGrpNppx
104 id y=pxy=px
105 103 104 oveq12d y=pxinvgSymGrpNpyMy=invgSymGrpNppxMpx
106 100 101 102 105 fmptco RCRingMBpPyNinvgSymGrpNpyMyp=xNinvgSymGrpNppxMpx
107 71 ad2antlr RCRingMBpPxNinvgSymGrpNp=p-1
108 107 fveq1d RCRingMBpPxNinvgSymGrpNppx=p-1px
109 f1ocnvfv1 p:N1-1 ontoNxNp-1px=x
110 86 109 sylan RCRingMBpPxNp-1px=x
111 108 110 eqtrd RCRingMBpPxNinvgSymGrpNppx=x
112 111 oveq1d RCRingMBpPxNinvgSymGrpNppxMpx=xMpx
113 112 mpteq2dva RCRingMBpPxNinvgSymGrpNppxMpx=xNxMpx
114 106 113 eqtrd RCRingMBpPyNinvgSymGrpNpyMyp=xNxMpx
115 114 oveq2d RCRingMBpPUyNinvgSymGrpNpyMyp=UxNxMpx
116 97 115 eqtrd RCRingMBpPUyNinvgSymGrpNpyMy=UxNxMpx
117 79 116 oveq12d RCRingMBpPYSinvgSymGrpNp·˙UyNinvgSymGrpNpyMy=YSp·˙UxNxMpx
118 117 mpteq2dva RCRingMBpPYSinvgSymGrpNp·˙UyNinvgSymGrpNpyMy=pPYSp·˙UxNxMpx
119 70 118 eqtrd RCRingMBqPYSq·˙UyNqyMyinvgSymGrpN=pPYSp·˙UxNxMpx
120 119 oveq2d RCRingMBRqPYSq·˙UyNqyMyinvgSymGrpN=RpPYSp·˙UxNxMpx
121 10 58 120 3eqtrd RCRingMBDM=RpPYSp·˙UxNxMpx