| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ply1annig1p.o |  | 
						
							| 2 |  | ply1annig1p.p |  | 
						
							| 3 |  | ply1annig1p.b |  | 
						
							| 4 |  | ply1annig1p.e |  | 
						
							| 5 |  | ply1annig1p.f |  | 
						
							| 6 |  | ply1annig1p.a |  | 
						
							| 7 |  | minplyirred.1 |  | 
						
							| 8 |  | minplyirred.2 |  | 
						
							| 9 |  | minplyirred.3 |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 | 1 2 3 4 5 6 10 11 12 13 7 | minplycl |  | 
						
							| 15 | 1 2 3 4 5 6 10 11 12 13 7 | minplyval |  | 
						
							| 16 |  | eqid |  | 
						
							| 17 |  | eqid |  | 
						
							| 18 | 17 | sdrgdrng |  | 
						
							| 19 | 5 18 | syl |  | 
						
							| 20 | 4 | fldcrngd |  | 
						
							| 21 |  | sdrgsubrg |  | 
						
							| 22 | 5 21 | syl |  | 
						
							| 23 | 1 2 3 20 22 6 10 11 | ply1annidl |  | 
						
							| 24 | 4 | flddrngd |  | 
						
							| 25 |  | drngnzr |  | 
						
							| 26 | 24 25 | syl |  | 
						
							| 27 | 1 2 3 20 22 6 10 11 16 26 | ply1annnr |  | 
						
							| 28 | 2 13 16 19 23 27 | ig1pnunit |  | 
						
							| 29 | 15 28 | eqneltrd |  | 
						
							| 30 |  | fldidom |  | 
						
							| 31 | 4 30 | syl |  | 
						
							| 32 | 31 | idomdomd |  | 
						
							| 33 | 32 | ad3antrrr |  | 
						
							| 34 | 20 | ad3antrrr |  | 
						
							| 35 | 22 | ad3antrrr |  | 
						
							| 36 | 6 | ad3antrrr |  | 
						
							| 37 |  | simpllr |  | 
						
							| 38 | 1 2 3 16 34 35 36 37 | evls1fvcl |  | 
						
							| 39 |  | simplr |  | 
						
							| 40 | 1 2 3 16 34 35 36 39 | evls1fvcl |  | 
						
							| 41 |  | simpr |  | 
						
							| 42 | 41 | fveq2d |  | 
						
							| 43 | 42 | fveq1d |  | 
						
							| 44 |  | eqid |  | 
						
							| 45 |  | eqid |  | 
						
							| 46 | 1 3 2 17 16 44 45 34 35 37 39 36 | evls1muld |  | 
						
							| 47 |  | eqid |  | 
						
							| 48 | 2 13 47 | ig1pcl |  | 
						
							| 49 | 19 23 48 | syl2anc |  | 
						
							| 50 | 15 49 | eqeltrd |  | 
						
							| 51 |  | fveq2 |  | 
						
							| 52 | 51 | fveq1d |  | 
						
							| 53 | 52 | eqeq1d |  | 
						
							| 54 | 53 | elrab |  | 
						
							| 55 | 50 54 | sylib |  | 
						
							| 56 | 55 | simprd |  | 
						
							| 57 | 56 | ad3antrrr |  | 
						
							| 58 | 43 46 57 | 3eqtr3d |  | 
						
							| 59 | 3 45 10 | domneq0 |  | 
						
							| 60 | 59 | biimpa |  | 
						
							| 61 | 33 38 40 58 60 | syl31anc |  | 
						
							| 62 | 4 | ad4antr |  | 
						
							| 63 | 5 | ad4antr |  | 
						
							| 64 | 36 | adantr |  | 
						
							| 65 | 9 | ad3antrrr |  | 
						
							| 66 | 65 | adantr |  | 
						
							| 67 | 37 | adantr |  | 
						
							| 68 |  | simpllr |  | 
						
							| 69 |  | simplr |  | 
						
							| 70 |  | simpr |  | 
						
							| 71 |  | fldsdrgfld |  | 
						
							| 72 | 4 5 71 | syl2anc |  | 
						
							| 73 |  | fldidom |  | 
						
							| 74 | 72 73 | syl |  | 
						
							| 75 | 74 | idomdomd |  | 
						
							| 76 | 2 | ply1domn |  | 
						
							| 77 | 75 76 | syl |  | 
						
							| 78 | 77 | ad3antrrr |  | 
						
							| 79 | 41 65 | eqnetrd |  | 
						
							| 80 | 16 44 8 | domneq0 |  | 
						
							| 81 | 80 | necon3abid |  | 
						
							| 82 | 81 | biimpa |  | 
						
							| 83 | 78 37 39 79 82 | syl31anc |  | 
						
							| 84 |  | neanior |  | 
						
							| 85 | 83 84 | sylibr |  | 
						
							| 86 | 85 | simpld |  | 
						
							| 87 | 86 | adantr |  | 
						
							| 88 | 85 | simprd |  | 
						
							| 89 | 88 | adantr |  | 
						
							| 90 | 1 2 3 62 63 64 7 8 66 67 68 69 70 87 89 | minplyirredlem |  | 
						
							| 91 | 90 | ex |  | 
						
							| 92 | 4 | ad4antr |  | 
						
							| 93 | 5 | ad4antr |  | 
						
							| 94 | 36 | adantr |  | 
						
							| 95 | 65 | adantr |  | 
						
							| 96 |  | simpllr |  | 
						
							| 97 | 37 | adantr |  | 
						
							| 98 | 72 | fldcrngd |  | 
						
							| 99 | 2 | ply1crng |  | 
						
							| 100 | 98 99 | syl |  | 
						
							| 101 | 100 | ad4antr |  | 
						
							| 102 | 16 44 | crngcom |  | 
						
							| 103 | 101 96 97 102 | syl3anc |  | 
						
							| 104 |  | simplr |  | 
						
							| 105 | 103 104 | eqtrd |  | 
						
							| 106 |  | simpr |  | 
						
							| 107 | 88 | adantr |  | 
						
							| 108 | 86 | adantr |  | 
						
							| 109 | 1 2 3 92 93 94 7 8 95 96 97 105 106 107 108 | minplyirredlem |  | 
						
							| 110 | 109 | ex |  | 
						
							| 111 | 91 110 | orim12d |  | 
						
							| 112 | 61 111 | mpd |  | 
						
							| 113 | 112 | orcomd |  | 
						
							| 114 | 113 | ex |  | 
						
							| 115 | 114 | anasss |  | 
						
							| 116 | 115 | ralrimivva |  | 
						
							| 117 |  | eqid |  | 
						
							| 118 |  | eqid |  | 
						
							| 119 | 16 117 118 44 | isirred2 |  | 
						
							| 120 | 14 29 116 119 | syl3anbrc |  |