Metamath Proof Explorer


Theorem nmlnop0iALT

Description: A linear operator with a zero norm is identically zero. (Contributed by NM, 8-Feb-2006) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis nmlnop0.1 TLinOp
Assertion nmlnop0iALT normopT=0T=0hop

Proof

Step Hyp Ref Expression
1 nmlnop0.1 TLinOp
2 normcl xnormx
3 2 recnd xnormx
4 3 adantr xTx0normx
5 norm-i xnormx=0x=0
6 fveq2 x=0Tx=T0
7 1 lnop0i T0=0
8 6 7 eqtrdi x=0Tx=0
9 5 8 syl6bi xnormx=0Tx=0
10 9 necon3d xTx0normx0
11 10 imp xTx0normx0
12 4 11 recne0d xTx01normx0
13 simpr xTx0Tx0
14 4 11 reccld xTx01normx
15 1 lnopfi T:
16 15 ffvelcdmi xTx
17 16 adantr xTx0Tx
18 hvmul0or 1normxTx1normxTx=01normx=0Tx=0
19 14 17 18 syl2anc xTx01normxTx=01normx=0Tx=0
20 19 necon3abid xTx01normxTx0¬1normx=0Tx=0
21 neanior 1normx0Tx0¬1normx=0Tx=0
22 20 21 bitr4di xTx01normxTx01normx0Tx0
23 12 13 22 mpbir2and xTx01normxTx0
24 hvmulcl 1normxTx1normxTx
25 14 17 24 syl2anc xTx01normxTx
26 normgt0 1normxTx1normxTx00<norm1normxTx
27 25 26 syl xTx01normxTx00<norm1normxTx
28 23 27 mpbid xTx00<norm1normxTx
29 28 ex xTx00<norm1normxTx
30 29 adantl normopT=0xTx00<norm1normxTx
31 nmopsetretHIL T:y|znormz1y=normTz
32 15 31 ax-mp y|znormz1y=normTz
33 ressxr *
34 32 33 sstri y|znormz1y=normTz*
35 simpl xTx0x
36 hvmulcl 1normxx1normxx
37 14 35 36 syl2anc xTx01normxx
38 8 necon3i Tx0x0
39 norm1 xx0norm1normxx=1
40 38 39 sylan2 xTx0norm1normxx=1
41 1re 1
42 40 41 eqeltrdi xTx0norm1normxx
43 eqle norm1normxxnorm1normxx=1norm1normxx1
44 42 40 43 syl2anc xTx0norm1normxx1
45 1 lnopmuli 1normxxT1normxx=1normxTx
46 14 35 45 syl2anc xTx0T1normxx=1normxTx
47 46 eqcomd xTx01normxTx=T1normxx
48 47 fveq2d xTx0norm1normxTx=normT1normxx
49 fveq2 z=1normxxnormz=norm1normxx
50 49 breq1d z=1normxxnormz1norm1normxx1
51 fveq2 z=1normxxTz=T1normxx
52 51 fveq2d z=1normxxnormTz=normT1normxx
53 52 eqeq2d z=1normxxnorm1normxTx=normTznorm1normxTx=normT1normxx
54 50 53 anbi12d z=1normxxnormz1norm1normxTx=normTznorm1normxx1norm1normxTx=normT1normxx
55 54 rspcev 1normxxnorm1normxx1norm1normxTx=normT1normxxznormz1norm1normxTx=normTz
56 37 44 48 55 syl12anc xTx0znormz1norm1normxTx=normTz
57 fvex norm1normxTxV
58 eqeq1 y=norm1normxTxy=normTznorm1normxTx=normTz
59 58 anbi2d y=norm1normxTxnormz1y=normTznormz1norm1normxTx=normTz
60 59 rexbidv y=norm1normxTxznormz1y=normTzznormz1norm1normxTx=normTz
61 57 60 elab norm1normxTxy|znormz1y=normTzznormz1norm1normxTx=normTz
62 56 61 sylibr xTx0norm1normxTxy|znormz1y=normTz
63 supxrub y|znormz1y=normTz*norm1normxTxy|znormz1y=normTznorm1normxTxsupy|znormz1y=normTz*<
64 34 62 63 sylancr xTx0norm1normxTxsupy|znormz1y=normTz*<
65 64 adantll normopT=0xTx0norm1normxTxsupy|znormz1y=normTz*<
66 nmopval T:normopT=supy|znormz1y=normTz*<
67 15 66 ax-mp normopT=supy|znormz1y=normTz*<
68 67 eqeq1i normopT=0supy|znormz1y=normTz*<=0
69 68 biimpi normopT=0supy|znormz1y=normTz*<=0
70 69 ad2antrr normopT=0xTx0supy|znormz1y=normTz*<=0
71 65 70 breqtrd normopT=0xTx0norm1normxTx0
72 normcl 1normxTxnorm1normxTx
73 25 72 syl xTx0norm1normxTx
74 0re 0
75 lenlt norm1normxTx0norm1normxTx0¬0<norm1normxTx
76 73 74 75 sylancl xTx0norm1normxTx0¬0<norm1normxTx
77 76 adantll normopT=0xTx0norm1normxTx0¬0<norm1normxTx
78 71 77 mpbid normopT=0xTx0¬0<norm1normxTx
79 78 ex normopT=0xTx0¬0<norm1normxTx
80 30 79 pm2.65d normopT=0x¬Tx0
81 nne ¬Tx0Tx=0
82 80 81 sylib normopT=0xTx=0
83 ho0val x0hopx=0
84 83 adantl normopT=0x0hopx=0
85 82 84 eqtr4d normopT=0xTx=0hopx
86 85 ralrimiva normopT=0xTx=0hopx
87 ffn T:TFn
88 15 87 ax-mp TFn
89 ho0f 0hop:
90 ffn 0hop:0hopFn
91 89 90 ax-mp 0hopFn
92 eqfnfv TFn0hopFnT=0hopxTx=0hopx
93 88 91 92 mp2an T=0hopxTx=0hopx
94 86 93 sylibr normopT=0T=0hop
95 fveq2 T=0hopnormopT=normop0hop
96 nmop0 normop0hop=0
97 95 96 eqtrdi T=0hopnormopT=0
98 94 97 impbii normopT=0T=0hop