Metamath Proof Explorer


Theorem ordtrest2NEW

Description: An interval-closed set A in a total order has the same subspace topology as the restricted order topology. (An interval-closed set is the same thing as an open or half-open or closed interval in RR , but in other sets like QQ there are interval-closed sets like ( _pi , +oo ) i^i QQ that are not intervals.) (Contributed by Mario Carneiro, 9-Sep-2015) (Revised by Thierry Arnoux, 11-Sep-2018)

Ref Expression
Hypotheses ordtNEW.b B=BaseK
ordtNEW.l ˙=KB×B
ordtrest2NEW.2 φKToset
ordtrest2NEW.3 φAB
ordtrest2NEW.4 φxAyAzB|x˙zz˙yA
Assertion ordtrest2NEW φordTop˙A×A=ordTop˙𝑡A

Proof

Step Hyp Ref Expression
1 ordtNEW.b B=BaseK
2 ordtNEW.l ˙=KB×B
3 ordtrest2NEW.2 φKToset
4 ordtrest2NEW.3 φAB
5 ordtrest2NEW.4 φxAyAzB|x˙zz˙yA
6 tospos KTosetKPoset
7 posprs KPosetKProset
8 3 6 7 3syl φKProset
9 1 2 ordtrestNEW KProsetABordTop˙A×AordTop˙𝑡A
10 8 4 9 syl2anc φordTop˙A×AordTop˙𝑡A
11 eqid ranzBwB|¬w˙z=ranzBwB|¬w˙z
12 eqid ranzBwB|¬z˙w=ranzBwB|¬z˙w
13 1 2 11 12 ordtprsval KProsetordTop˙=topGenfiBranzBwB|¬w˙zranzBwB|¬z˙w
14 8 13 syl φordTop˙=topGenfiBranzBwB|¬w˙zranzBwB|¬z˙w
15 14 oveq1d φordTop˙𝑡A=topGenfiBranzBwB|¬w˙zranzBwB|¬z˙w𝑡A
16 fibas fiBranzBwB|¬w˙zranzBwB|¬z˙wTopBases
17 1 fvexi BV
18 17 a1i φBV
19 18 4 ssexd φAV
20 tgrest fiBranzBwB|¬w˙zranzBwB|¬z˙wTopBasesAVtopGenfiBranzBwB|¬w˙zranzBwB|¬z˙w𝑡A=topGenfiBranzBwB|¬w˙zranzBwB|¬z˙w𝑡A
21 16 19 20 sylancr φtopGenfiBranzBwB|¬w˙zranzBwB|¬z˙w𝑡A=topGenfiBranzBwB|¬w˙zranzBwB|¬z˙w𝑡A
22 15 21 eqtr4d φordTop˙𝑡A=topGenfiBranzBwB|¬w˙zranzBwB|¬z˙w𝑡A
23 firest fiBranzBwB|¬w˙zranzBwB|¬z˙w𝑡A=fiBranzBwB|¬w˙zranzBwB|¬z˙w𝑡A
24 23 fveq2i topGenfiBranzBwB|¬w˙zranzBwB|¬z˙w𝑡A=topGenfiBranzBwB|¬w˙zranzBwB|¬z˙w𝑡A
25 22 24 eqtr4di φordTop˙𝑡A=topGenfiBranzBwB|¬w˙zranzBwB|¬z˙w𝑡A
26 fvex KV
27 26 inex1 KB×BV
28 2 27 eqeltri ˙V
29 28 inex1 ˙A×AV
30 ordttop ˙A×AVordTop˙A×ATop
31 29 30 mp1i φordTop˙A×ATop
32 1 2 11 12 ordtprsuni KProsetB=BranzBwB|¬w˙zranzBwB|¬z˙w
33 8 32 syl φB=BranzBwB|¬w˙zranzBwB|¬z˙w
34 33 18 eqeltrrd φBranzBwB|¬w˙zranzBwB|¬z˙wV
35 uniexb BranzBwB|¬w˙zranzBwB|¬z˙wVBranzBwB|¬w˙zranzBwB|¬z˙wV
36 34 35 sylibr φBranzBwB|¬w˙zranzBwB|¬z˙wV
37 restval BranzBwB|¬w˙zranzBwB|¬z˙wVAVBranzBwB|¬w˙zranzBwB|¬z˙w𝑡A=ranvBranzBwB|¬w˙zranzBwB|¬z˙wvA
38 36 19 37 syl2anc φBranzBwB|¬w˙zranzBwB|¬z˙w𝑡A=ranvBranzBwB|¬w˙zranzBwB|¬z˙wvA
39 sseqin2 ABBA=A
40 4 39 sylib φBA=A
41 eqid dom˙A×A=dom˙A×A
42 41 ordttopon ˙A×AVordTop˙A×ATopOndom˙A×A
43 29 42 mp1i φordTop˙A×ATopOndom˙A×A
44 1 2 prsssdm KProsetABdom˙A×A=A
45 8 4 44 syl2anc φdom˙A×A=A
46 45 fveq2d φTopOndom˙A×A=TopOnA
47 43 46 eleqtrd φordTop˙A×ATopOnA
48 toponmax ordTop˙A×ATopOnAAordTop˙A×A
49 47 48 syl φAordTop˙A×A
50 40 49 eqeltrd φBAordTop˙A×A
51 elsni vBv=B
52 51 ineq1d vBvA=BA
53 52 eleq1d vBvAordTop˙A×ABAordTop˙A×A
54 50 53 syl5ibrcom φvBvAordTop˙A×A
55 54 ralrimiv φvBvAordTop˙A×A
56 1 2 3 4 5 ordtrest2NEWlem φvranzBwB|¬w˙zvAordTop˙A×A
57 eqid ODualK=ODualK
58 57 1 odubas B=BaseODualK
59 2 cnveqi ˙-1=KB×B-1
60 cnvin KB×B-1=K-1B×B-1
61 cnvxp B×B-1=B×B
62 61 ineq2i K-1B×B-1=K-1B×B
63 eqid K=K
64 57 63 oduleval K-1=ODualK
65 64 ineq1i K-1B×B=ODualKB×B
66 60 62 65 3eqtri KB×B-1=ODualKB×B
67 59 66 eqtri ˙-1=ODualKB×B
68 57 odutos KTosetODualKToset
69 3 68 syl φODualKToset
70 vex yV
71 vex zV
72 70 71 brcnv y˙-1zz˙y
73 vex xV
74 71 73 brcnv z˙-1xx˙z
75 72 74 anbi12ci y˙-1zz˙-1xx˙zz˙y
76 75 rabbii zB|y˙-1zz˙-1x=zB|x˙zz˙y
77 76 5 eqsstrid φxAyAzB|y˙-1zz˙-1xA
78 77 ancom2s φyAxAzB|y˙-1zz˙-1xA
79 58 67 69 4 78 ordtrest2NEWlem φvranzBwB|¬w˙-1zvAordTop˙-1A×A
80 vex wV
81 80 71 brcnv w˙-1zz˙w
82 81 bicomi z˙ww˙-1z
83 82 a1i φz˙ww˙-1z
84 83 notbid φ¬z˙w¬w˙-1z
85 84 rabbidv φwB|¬z˙w=wB|¬w˙-1z
86 85 mpteq2dv φzBwB|¬z˙w=zBwB|¬w˙-1z
87 86 rneqd φranzBwB|¬z˙w=ranzBwB|¬w˙-1z
88 1 ressprs KProsetABK𝑠AProset
89 8 4 88 syl2anc φK𝑠AProset
90 eqid BaseK𝑠A=BaseK𝑠A
91 eqid K𝑠ABaseK𝑠A×BaseK𝑠A=K𝑠ABaseK𝑠A×BaseK𝑠A
92 90 91 ordtcnvNEW K𝑠AProsetordTopK𝑠ABaseK𝑠A×BaseK𝑠A-1=ordTopK𝑠ABaseK𝑠A×BaseK𝑠A
93 89 92 syl φordTopK𝑠ABaseK𝑠A×BaseK𝑠A-1=ordTopK𝑠ABaseK𝑠A×BaseK𝑠A
94 1 2 prsss KProsetAB˙A×A=KA×A
95 8 4 94 syl2anc φ˙A×A=KA×A
96 eqid K𝑠A=K𝑠A
97 96 63 ressle AVK=K𝑠A
98 19 97 syl φK=K𝑠A
99 96 1 ressbas2 ABA=BaseK𝑠A
100 4 99 syl φA=BaseK𝑠A
101 100 sqxpeqd φA×A=BaseK𝑠A×BaseK𝑠A
102 98 101 ineq12d φKA×A=K𝑠ABaseK𝑠A×BaseK𝑠A
103 95 102 eqtrd φ˙A×A=K𝑠ABaseK𝑠A×BaseK𝑠A
104 103 cnveqd φ˙A×A-1=K𝑠ABaseK𝑠A×BaseK𝑠A-1
105 104 fveq2d φordTop˙A×A-1=ordTopK𝑠ABaseK𝑠A×BaseK𝑠A-1
106 103 fveq2d φordTop˙A×A=ordTopK𝑠ABaseK𝑠A×BaseK𝑠A
107 93 105 106 3eqtr4d φordTop˙A×A-1=ordTop˙A×A
108 cnvin ˙A×A-1=˙-1A×A-1
109 cnvxp A×A-1=A×A
110 109 ineq2i ˙-1A×A-1=˙-1A×A
111 108 110 eqtri ˙A×A-1=˙-1A×A
112 111 fveq2i ordTop˙A×A-1=ordTop˙-1A×A
113 107 112 eqtr3di φordTop˙A×A=ordTop˙-1A×A
114 113 eleq2d φvAordTop˙A×AvAordTop˙-1A×A
115 87 114 raleqbidv φvranzBwB|¬z˙wvAordTop˙A×AvranzBwB|¬w˙-1zvAordTop˙-1A×A
116 79 115 mpbird φvranzBwB|¬z˙wvAordTop˙A×A
117 ralunb vranzBwB|¬w˙zranzBwB|¬z˙wvAordTop˙A×AvranzBwB|¬w˙zvAordTop˙A×AvranzBwB|¬z˙wvAordTop˙A×A
118 56 116 117 sylanbrc φvranzBwB|¬w˙zranzBwB|¬z˙wvAordTop˙A×A
119 ralunb vBranzBwB|¬w˙zranzBwB|¬z˙wvAordTop˙A×AvBvAordTop˙A×AvranzBwB|¬w˙zranzBwB|¬z˙wvAordTop˙A×A
120 55 118 119 sylanbrc φvBranzBwB|¬w˙zranzBwB|¬z˙wvAordTop˙A×A
121 eqid vBranzBwB|¬w˙zranzBwB|¬z˙wvA=vBranzBwB|¬w˙zranzBwB|¬z˙wvA
122 121 fmpt vBranzBwB|¬w˙zranzBwB|¬z˙wvAordTop˙A×AvBranzBwB|¬w˙zranzBwB|¬z˙wvA:BranzBwB|¬w˙zranzBwB|¬z˙wordTop˙A×A
123 120 122 sylib φvBranzBwB|¬w˙zranzBwB|¬z˙wvA:BranzBwB|¬w˙zranzBwB|¬z˙wordTop˙A×A
124 123 frnd φranvBranzBwB|¬w˙zranzBwB|¬z˙wvAordTop˙A×A
125 38 124 eqsstrd φBranzBwB|¬w˙zranzBwB|¬z˙w𝑡AordTop˙A×A
126 tgfiss ordTop˙A×ATopBranzBwB|¬w˙zranzBwB|¬z˙w𝑡AordTop˙A×AtopGenfiBranzBwB|¬w˙zranzBwB|¬z˙w𝑡AordTop˙A×A
127 31 125 126 syl2anc φtopGenfiBranzBwB|¬w˙zranzBwB|¬z˙w𝑡AordTop˙A×A
128 25 127 eqsstrd φordTop˙𝑡AordTop˙A×A
129 10 128 eqssd φordTop˙A×A=ordTop˙𝑡A