Metamath Proof Explorer


Theorem ostth

Description: Ostrowski's theorem, which classifies all absolute values on QQ . Any such absolute value must either be the trivial absolute value K , a constant exponent 0 < a <_ 1 times the regular absolute value, or a positive exponent times the p-adic absolute value. (Contributed by Mario Carneiro, 10-Sep-2014)

Ref Expression
Hypotheses qrng.q Q = fld 𝑠
qabsabv.a A = AbsVal Q
padic.j J = q x if x = 0 0 q q pCnt x
ostth.k K = x if x = 0 0 1
Assertion ostth F A F = K a 0 1 F = y y a a + g ran J F = y g y a

Proof

Step Hyp Ref Expression
1 qrng.q Q = fld 𝑠
2 qabsabv.a A = AbsVal Q
3 padic.j J = q x if x = 0 0 q q pCnt x
4 ostth.k K = x if x = 0 0 1
5 simpl F A n 1 < F n F A
6 1re 1
7 6 ltnri ¬ 1 < 1
8 ax-1ne0 1 0
9 1 qrng1 1 = 1 Q
10 1 qrng0 0 = 0 Q
11 2 9 10 abv1z F A 1 0 F 1 = 1
12 8 11 mpan2 F A F 1 = 1
13 12 breq2d F A 1 < F 1 1 < 1
14 7 13 mtbiri F A ¬ 1 < F 1
15 14 adantr F A n 1 < F n ¬ 1 < F 1
16 simprr F A n 1 < F n 1 < F n
17 fveq2 n = 1 F n = F 1
18 17 breq2d n = 1 1 < F n 1 < F 1
19 16 18 syl5ibcom F A n 1 < F n n = 1 1 < F 1
20 15 19 mtod F A n 1 < F n ¬ n = 1
21 simprl F A n 1 < F n n
22 elnn1uz2 n n = 1 n 2
23 21 22 sylib F A n 1 < F n n = 1 n 2
24 23 ord F A n 1 < F n ¬ n = 1 n 2
25 20 24 mpd F A n 1 < F n n 2
26 eqid log F n log n = log F n log n
27 1 2 3 4 5 25 16 26 ostth2 F A n 1 < F n a 0 1 F = y y a
28 27 rexlimdvaa F A n 1 < F n a 0 1 F = y y a
29 3mix2 a 0 1 F = y y a F = K a 0 1 F = y y a a + g ran J F = y g y a
30 28 29 syl6 F A n 1 < F n F = K a 0 1 F = y y a a + g ran J F = y g y a
31 ralnex n ¬ 1 < F n ¬ n 1 < F n
32 simpll F A n ¬ 1 < F n p F p < 1 F A
33 simplr F A n ¬ 1 < F n p F p < 1 n ¬ 1 < F n
34 fveq2 n = k F n = F k
35 34 breq2d n = k 1 < F n 1 < F k
36 35 notbid n = k ¬ 1 < F n ¬ 1 < F k
37 36 cbvralvw n ¬ 1 < F n k ¬ 1 < F k
38 33 37 sylib F A n ¬ 1 < F n p F p < 1 k ¬ 1 < F k
39 simprl F A n ¬ 1 < F n p F p < 1 p
40 simprr F A n ¬ 1 < F n p F p < 1 F p < 1
41 eqid log F p log p = log F p log p
42 eqid if F p F z F z F p = if F p F z F z F p
43 1 2 3 4 32 38 39 40 41 42 ostth3 F A n ¬ 1 < F n p F p < 1 a + F = y J p y a
44 43 expr F A n ¬ 1 < F n p F p < 1 a + F = y J p y a
45 44 reximdva F A n ¬ 1 < F n p F p < 1 p a + F = y J p y a
46 1 2 3 padicabvf J : A
47 ffn J : A J Fn
48 fveq1 g = J p g y = J p y
49 48 oveq1d g = J p g y a = J p y a
50 49 mpteq2dv g = J p y g y a = y J p y a
51 50 eqeq2d g = J p F = y g y a F = y J p y a
52 51 rexrn J Fn g ran J F = y g y a p F = y J p y a
53 46 47 52 mp2b g ran J F = y g y a p F = y J p y a
54 53 rexbii a + g ran J F = y g y a a + p F = y J p y a
55 rexcom a + p F = y J p y a p a + F = y J p y a
56 54 55 bitri a + g ran J F = y g y a p a + F = y J p y a
57 3mix3 a + g ran J F = y g y a F = K a 0 1 F = y y a a + g ran J F = y g y a
58 56 57 sylbir p a + F = y J p y a F = K a 0 1 F = y y a a + g ran J F = y g y a
59 45 58 syl6 F A n ¬ 1 < F n p F p < 1 F = K a 0 1 F = y y a a + g ran J F = y g y a
60 ralnex p ¬ F p < 1 ¬ p F p < 1
61 simpl F A n ¬ 1 < F n p ¬ F p < 1 F A
62 simprl F A n ¬ 1 < F n p ¬ F p < 1 n ¬ 1 < F n
63 62 37 sylib F A n ¬ 1 < F n p ¬ F p < 1 k ¬ 1 < F k
64 simprr F A n ¬ 1 < F n p ¬ F p < 1 p ¬ F p < 1
65 fveq2 p = k F p = F k
66 65 breq1d p = k F p < 1 F k < 1
67 66 notbid p = k ¬ F p < 1 ¬ F k < 1
68 67 cbvralvw p ¬ F p < 1 k ¬ F k < 1
69 64 68 sylib F A n ¬ 1 < F n p ¬ F p < 1 k ¬ F k < 1
70 1 2 3 4 61 63 69 ostth1 F A n ¬ 1 < F n p ¬ F p < 1 F = K
71 70 3mix1d F A n ¬ 1 < F n p ¬ F p < 1 F = K a 0 1 F = y y a a + g ran J F = y g y a
72 71 expr F A n ¬ 1 < F n p ¬ F p < 1 F = K a 0 1 F = y y a a + g ran J F = y g y a
73 60 72 syl5bir F A n ¬ 1 < F n ¬ p F p < 1 F = K a 0 1 F = y y a a + g ran J F = y g y a
74 59 73 pm2.61d F A n ¬ 1 < F n F = K a 0 1 F = y y a a + g ran J F = y g y a
75 74 ex F A n ¬ 1 < F n F = K a 0 1 F = y y a a + g ran J F = y g y a
76 31 75 syl5bir F A ¬ n 1 < F n F = K a 0 1 F = y y a a + g ran J F = y g y a
77 30 76 pm2.61d F A F = K a 0 1 F = y y a a + g ran J F = y g y a
78 id F = K F = K
79 1 qdrng Q DivRing
80 1 qrngbas = Base Q
81 2 80 10 4 abvtriv Q DivRing K A
82 79 81 ax-mp K A
83 78 82 eqeltrdi F = K F A
84 1 2 qabsabv abs A
85 fvres y abs y = y
86 85 oveq1d y abs y a = y a
87 86 mpteq2ia y abs y a = y y a
88 87 eqcomi y y a = y abs y a
89 2 80 88 abvcxp abs A a 0 1 y y a A
90 84 89 mpan a 0 1 y y a A
91 eleq1 F = y y a F A y y a A
92 90 91 syl5ibrcom a 0 1 F = y y a F A
93 92 rexlimiv a 0 1 F = y y a F A
94 1 2 3 padicabvcxp p a + y J p y a A
95 94 ancoms a + p y J p y a A
96 eleq1 F = y J p y a F A y J p y a A
97 95 96 syl5ibrcom a + p F = y J p y a F A
98 97 rexlimivv a + p F = y J p y a F A
99 54 98 sylbi a + g ran J F = y g y a F A
100 83 93 99 3jaoi F = K a 0 1 F = y y a a + g ran J F = y g y a F A
101 77 100 impbii F A F = K a 0 1 F = y y a a + g ran J F = y g y a