Metamath Proof Explorer


Theorem ostth

Description: Ostrowski's theorem, which classifies all absolute values on QQ . Any such absolute value must either be the trivial absolute value K , a constant exponent 0 < a <_ 1 times the regular absolute value, or a positive exponent times the p-adic absolute value. (Contributed by Mario Carneiro, 10-Sep-2014)

Ref Expression
Hypotheses qrng.q Q=fld𝑠
qabsabv.a A=AbsValQ
padic.j J=qxifx=00qqpCntx
ostth.k K=xifx=001
Assertion ostth FAF=Ka01F=yyaa+granJF=ygya

Proof

Step Hyp Ref Expression
1 qrng.q Q=fld𝑠
2 qabsabv.a A=AbsValQ
3 padic.j J=qxifx=00qqpCntx
4 ostth.k K=xifx=001
5 simpl FAn1<FnFA
6 1re 1
7 6 ltnri ¬1<1
8 ax-1ne0 10
9 1 qrng1 1=1Q
10 1 qrng0 0=0Q
11 2 9 10 abv1z FA10F1=1
12 8 11 mpan2 FAF1=1
13 12 breq2d FA1<F11<1
14 7 13 mtbiri FA¬1<F1
15 14 adantr FAn1<Fn¬1<F1
16 simprr FAn1<Fn1<Fn
17 fveq2 n=1Fn=F1
18 17 breq2d n=11<Fn1<F1
19 16 18 syl5ibcom FAn1<Fnn=11<F1
20 15 19 mtod FAn1<Fn¬n=1
21 simprl FAn1<Fnn
22 elnn1uz2 nn=1n2
23 21 22 sylib FAn1<Fnn=1n2
24 23 ord FAn1<Fn¬n=1n2
25 20 24 mpd FAn1<Fnn2
26 eqid logFnlogn=logFnlogn
27 1 2 3 4 5 25 16 26 ostth2 FAn1<Fna01F=yya
28 27 rexlimdvaa FAn1<Fna01F=yya
29 3mix2 a01F=yyaF=Ka01F=yyaa+granJF=ygya
30 28 29 syl6 FAn1<FnF=Ka01F=yyaa+granJF=ygya
31 ralnex n¬1<Fn¬n1<Fn
32 simpll FAn¬1<FnpFp<1FA
33 simplr FAn¬1<FnpFp<1n¬1<Fn
34 fveq2 n=kFn=Fk
35 34 breq2d n=k1<Fn1<Fk
36 35 notbid n=k¬1<Fn¬1<Fk
37 36 cbvralvw n¬1<Fnk¬1<Fk
38 33 37 sylib FAn¬1<FnpFp<1k¬1<Fk
39 simprl FAn¬1<FnpFp<1p
40 simprr FAn¬1<FnpFp<1Fp<1
41 eqid logFplogp=logFplogp
42 eqid ifFpFzFzFp=ifFpFzFzFp
43 1 2 3 4 32 38 39 40 41 42 ostth3 FAn¬1<FnpFp<1a+F=yJpya
44 43 expr FAn¬1<FnpFp<1a+F=yJpya
45 44 reximdva FAn¬1<FnpFp<1pa+F=yJpya
46 1 2 3 padicabvf J:A
47 ffn J:AJFn
48 fveq1 g=Jpgy=Jpy
49 48 oveq1d g=Jpgya=Jpya
50 49 mpteq2dv g=Jpygya=yJpya
51 50 eqeq2d g=JpF=ygyaF=yJpya
52 51 rexrn JFngranJF=ygyapF=yJpya
53 46 47 52 mp2b granJF=ygyapF=yJpya
54 53 rexbii a+granJF=ygyaa+pF=yJpya
55 rexcom a+pF=yJpyapa+F=yJpya
56 54 55 bitri a+granJF=ygyapa+F=yJpya
57 3mix3 a+granJF=ygyaF=Ka01F=yyaa+granJF=ygya
58 56 57 sylbir pa+F=yJpyaF=Ka01F=yyaa+granJF=ygya
59 45 58 syl6 FAn¬1<FnpFp<1F=Ka01F=yyaa+granJF=ygya
60 ralnex p¬Fp<1¬pFp<1
61 simpl FAn¬1<Fnp¬Fp<1FA
62 simprl FAn¬1<Fnp¬Fp<1n¬1<Fn
63 62 37 sylib FAn¬1<Fnp¬Fp<1k¬1<Fk
64 simprr FAn¬1<Fnp¬Fp<1p¬Fp<1
65 fveq2 p=kFp=Fk
66 65 breq1d p=kFp<1Fk<1
67 66 notbid p=k¬Fp<1¬Fk<1
68 67 cbvralvw p¬Fp<1k¬Fk<1
69 64 68 sylib FAn¬1<Fnp¬Fp<1k¬Fk<1
70 1 2 3 4 61 63 69 ostth1 FAn¬1<Fnp¬Fp<1F=K
71 70 3mix1d FAn¬1<Fnp¬Fp<1F=Ka01F=yyaa+granJF=ygya
72 71 expr FAn¬1<Fnp¬Fp<1F=Ka01F=yyaa+granJF=ygya
73 60 72 biimtrrid FAn¬1<Fn¬pFp<1F=Ka01F=yyaa+granJF=ygya
74 59 73 pm2.61d FAn¬1<FnF=Ka01F=yyaa+granJF=ygya
75 74 ex FAn¬1<FnF=Ka01F=yyaa+granJF=ygya
76 31 75 biimtrrid FA¬n1<FnF=Ka01F=yyaa+granJF=ygya
77 30 76 pm2.61d FAF=Ka01F=yyaa+granJF=ygya
78 id F=KF=K
79 1 qdrng QDivRing
80 1 qrngbas =BaseQ
81 2 80 10 4 abvtriv QDivRingKA
82 79 81 ax-mp KA
83 78 82 eqeltrdi F=KFA
84 1 2 qabsabv absA
85 fvres yabsy=y
86 85 oveq1d yabsya=ya
87 86 mpteq2ia yabsya=yya
88 87 eqcomi yya=yabsya
89 2 80 88 abvcxp absAa01yyaA
90 84 89 mpan a01yyaA
91 eleq1 F=yyaFAyyaA
92 90 91 syl5ibrcom a01F=yyaFA
93 92 rexlimiv a01F=yyaFA
94 1 2 3 padicabvcxp pa+yJpyaA
95 94 ancoms a+pyJpyaA
96 eleq1 F=yJpyaFAyJpyaA
97 95 96 syl5ibrcom a+pF=yJpyaFA
98 97 rexlimivv a+pF=yJpyaFA
99 54 98 sylbi a+granJF=ygyaFA
100 83 93 99 3jaoi F=Ka01F=yyaa+granJF=ygyaFA
101 77 100 impbii FAF=Ka01F=yyaa+granJF=ygya