Metamath Proof Explorer


Theorem ovnlecvr2

Description: Given a subset of multidimensional reals and a set of half-open intervals that covers it, the Lebesgue outer measure of the set is bounded by the generalized sum of the pre-measure of the half-open intervals. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses ovnlecvr2.x φ X Fin
ovnlecvr2.c φ C : X
ovnlecvr2.d φ D : X
ovnlecvr2.s φ A j k X C j k D j k
ovnlecvr2.l L = x Fin a x , b x if x = 0 k x vol a k b k
Assertion ovnlecvr2 φ voln* X A sum^ j C j L X D j

Proof

Step Hyp Ref Expression
1 ovnlecvr2.x φ X Fin
2 ovnlecvr2.c φ C : X
3 ovnlecvr2.d φ D : X
4 ovnlecvr2.s φ A j k X C j k D j k
5 ovnlecvr2.l L = x Fin a x , b x if x = 0 k x vol a k b k
6 fveq2 X = voln* X = voln*
7 6 fveq1d X = voln* X A = voln* A
8 7 adantl φ X = voln* X A = voln* A
9 4 adantr φ X = A j k X C j k D j k
10 1nn 1
11 ne0i 1
12 10 11 ax-mp
13 12 a1i φ
14 iunconst j =
15 13 14 syl φ j =
16 15 adantr φ X = j =
17 ixpeq1 X = k X C j k D j k = k C j k D j k
18 ixp0x k C j k D j k =
19 18 a1i X = k C j k D j k =
20 17 19 eqtrd X = k X C j k D j k =
21 20 adantr X = j k X C j k D j k =
22 21 iuneq2dv X = j k X C j k D j k = j
23 22 adantl φ X = j k X C j k D j k = j
24 reex V
25 mapdm0 V =
26 24 25 ax-mp =
27 26 a1i φ X = =
28 16 23 27 3eqtr4d φ X = j k X C j k D j k =
29 9 28 sseqtrd φ X = A
30 29 ovn0val φ X = voln* A = 0
31 8 30 eqtrd φ X = voln* X A = 0
32 nfv j φ
33 nnex V
34 33 a1i φ V
35 icossicc 0 +∞ 0 +∞
36 1 adantr φ j X Fin
37 2 ffvelrnda φ j C j X
38 elmapi C j X C j : X
39 37 38 syl φ j C j : X
40 3 ffvelrnda φ j D j X
41 elmapi D j X D j : X
42 40 41 syl φ j D j : X
43 5 36 39 42 hoidmvcl φ j C j L X D j 0 +∞
44 35 43 sselid φ j C j L X D j 0 +∞
45 32 34 44 sge0ge0mpt φ 0 sum^ j C j L X D j
46 45 adantr φ X = 0 sum^ j C j L X D j
47 31 46 eqbrtrd φ X = voln* X A sum^ j C j L X D j
48 simpl φ ¬ X = φ
49 neqne ¬ X = X
50 49 adantl φ ¬ X = X
51 1 adantr φ X X Fin
52 simpr φ X X
53 39 ffvelrnda φ j k X C j k
54 42 ffvelrnda φ j k X D j k
55 54 rexrd φ j k X D j k *
56 icossre C j k D j k * C j k D j k
57 53 55 56 syl2anc φ j k X C j k D j k
58 57 ralrimiva φ j k X C j k D j k
59 ss2ixp k X C j k D j k k X C j k D j k k X
60 58 59 syl φ j k X C j k D j k k X
61 24 a1i φ V
62 ixpconstg X Fin V k X = X
63 1 61 62 syl2anc φ k X = X
64 63 adantr φ j k X = X
65 60 64 sseqtrd φ j k X C j k D j k X
66 65 ralrimiva φ j k X C j k D j k X
67 iunss j k X C j k D j k X j k X C j k D j k X
68 66 67 sylibr φ j k X C j k D j k X
69 4 68 sstrd φ A X
70 69 adantr φ X A X
71 eqid z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k = z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k
72 51 52 70 71 ovnn0val φ X voln* X A = sup z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k * <
73 ssrab2 z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k *
74 73 a1i φ X z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k *
75 32 34 44 sge0xrclmpt φ sum^ j C j L X D j *
76 75 adantr φ X sum^ j C j L X D j *
77 opelxpi C j k D j k C j k D j k 2
78 53 54 77 syl2anc φ j k X C j k D j k 2
79 78 fmpttd φ j k X C j k D j k : X 2
80 24 24 xpex 2 V
81 80 a1i φ j 2 V
82 elmapg 2 V X Fin k X C j k D j k 2 X k X C j k D j k : X 2
83 81 36 82 syl2anc φ j k X C j k D j k 2 X k X C j k D j k : X 2
84 79 83 mpbird φ j k X C j k D j k 2 X
85 84 fmpttd φ j k X C j k D j k : 2 X
86 ovexd φ 2 X V
87 elmapg 2 X V V j k X C j k D j k 2 X j k X C j k D j k : 2 X
88 86 34 87 syl2anc φ j k X C j k D j k 2 X j k X C j k D j k : 2 X
89 85 88 mpbird φ j k X C j k D j k 2 X
90 89 adantr φ X j k X C j k D j k 2 X
91 simpr φ j j
92 mptexg X Fin k X C j k D j k V
93 1 92 syl φ k X C j k D j k V
94 93 adantr φ j k X C j k D j k V
95 eqid j k X C j k D j k = j k X C j k D j k
96 95 fvmpt2 j k X C j k D j k V j k X C j k D j k j = k X C j k D j k
97 91 94 96 syl2anc φ j j k X C j k D j k j = k X C j k D j k
98 97 coeq2d φ j . j k X C j k D j k j = . k X C j k D j k
99 98 fveq1d φ j . j k X C j k D j k j k = . k X C j k D j k k
100 99 adantr φ j k X . j k X C j k D j k j k = . k X C j k D j k k
101 79 adantr φ j k X k X C j k D j k : X 2
102 simpr φ j k X k X
103 101 102 fvovco φ j k X . k X C j k D j k k = 1 st k X C j k D j k k 2 nd k X C j k D j k k
104 simpr φ k X k X
105 opex C j k D j k V
106 105 a1i φ k X C j k D j k V
107 eqid k X C j k D j k = k X C j k D j k
108 107 fvmpt2 k X C j k D j k V k X C j k D j k k = C j k D j k
109 104 106 108 syl2anc φ k X k X C j k D j k k = C j k D j k
110 109 fveq2d φ k X 1 st k X C j k D j k k = 1 st C j k D j k
111 fvex C j k V
112 fvex D j k V
113 op1stg C j k V D j k V 1 st C j k D j k = C j k
114 111 112 113 mp2an 1 st C j k D j k = C j k
115 114 a1i φ k X 1 st C j k D j k = C j k
116 110 115 eqtrd φ k X 1 st k X C j k D j k k = C j k
117 109 fveq2d φ k X 2 nd k X C j k D j k k = 2 nd C j k D j k
118 111 112 op2nd 2 nd C j k D j k = D j k
119 118 a1i φ k X 2 nd C j k D j k = D j k
120 117 119 eqtrd φ k X 2 nd k X C j k D j k k = D j k
121 116 120 oveq12d φ k X 1 st k X C j k D j k k 2 nd k X C j k D j k k = C j k D j k
122 121 adantlr φ j k X 1 st k X C j k D j k k 2 nd k X C j k D j k k = C j k D j k
123 100 103 122 3eqtrrd φ j k X C j k D j k = . j k X C j k D j k j k
124 123 ixpeq2dva φ j k X C j k D j k = k X . j k X C j k D j k j k
125 124 iuneq2dv φ j k X C j k D j k = j k X . j k X C j k D j k j k
126 4 125 sseqtrd φ A j k X . j k X C j k D j k j k
127 126 adantr φ X A j k X . j k X C j k D j k j k
128 eqidd φ X sum^ j k X vol C j k D j k = sum^ j k X vol C j k D j k
129 51 adantr φ X j X Fin
130 52 adantr φ X j X
131 39 adantlr φ X j C j : X
132 42 adantlr φ X j D j : X
133 5 129 130 131 132 hoidmvn0val φ X j C j L X D j = k X vol C j k D j k
134 133 mpteq2dva φ X j C j L X D j = j k X vol C j k D j k
135 134 fveq2d φ X sum^ j C j L X D j = sum^ j k X vol C j k D j k
136 123 eqcomd φ j k X . j k X C j k D j k j k = C j k D j k
137 136 fveq2d φ j k X vol . j k X C j k D j k j k = vol C j k D j k
138 137 prodeq2dv φ j k X vol . j k X C j k D j k j k = k X vol C j k D j k
139 138 mpteq2dva φ j k X vol . j k X C j k D j k j k = j k X vol C j k D j k
140 139 fveq2d φ sum^ j k X vol . j k X C j k D j k j k = sum^ j k X vol C j k D j k
141 140 adantr φ X sum^ j k X vol . j k X C j k D j k j k = sum^ j k X vol C j k D j k
142 128 135 141 3eqtr4d φ X sum^ j C j L X D j = sum^ j k X vol . j k X C j k D j k j k
143 127 142 jca φ X A j k X . j k X C j k D j k j k sum^ j C j L X D j = sum^ j k X vol . j k X C j k D j k j k
144 nfcv _ j i
145 nfmpt1 _ j j k X C j k D j k
146 144 145 nfeq j i = j k X C j k D j k
147 nfcv _ k i
148 nfcv _ k
149 nfmpt1 _ k k X C j k D j k
150 148 149 nfmpt _ k j k X C j k D j k
151 147 150 nfeq k i = j k X C j k D j k
152 fveq1 i = j k X C j k D j k i j = j k X C j k D j k j
153 152 coeq2d i = j k X C j k D j k . i j = . j k X C j k D j k j
154 153 fveq1d i = j k X C j k D j k . i j k = . j k X C j k D j k j k
155 154 adantr i = j k X C j k D j k k X . i j k = . j k X C j k D j k j k
156 151 155 ixpeq2d i = j k X C j k D j k k X . i j k = k X . j k X C j k D j k j k
157 156 adantr i = j k X C j k D j k j k X . i j k = k X . j k X C j k D j k j k
158 146 157 iuneq2df i = j k X C j k D j k j k X . i j k = j k X . j k X C j k D j k j k
159 158 sseq2d i = j k X C j k D j k A j k X . i j k A j k X . j k X C j k D j k j k
160 nfv k j
161 151 160 nfan k i = j k X C j k D j k j
162 154 fveq2d i = j k X C j k D j k vol . i j k = vol . j k X C j k D j k j k
163 162 a1d i = j k X C j k D j k k X vol . i j k = vol . j k X C j k D j k j k
164 163 adantr i = j k X C j k D j k j k X vol . i j k = vol . j k X C j k D j k j k
165 161 164 ralrimi i = j k X C j k D j k j k X vol . i j k = vol . j k X C j k D j k j k
166 165 prodeq2d i = j k X C j k D j k j k X vol . i j k = k X vol . j k X C j k D j k j k
167 146 166 mpteq2da i = j k X C j k D j k j k X vol . i j k = j k X vol . j k X C j k D j k j k
168 167 fveq2d i = j k X C j k D j k sum^ j k X vol . i j k = sum^ j k X vol . j k X C j k D j k j k
169 168 eqeq2d i = j k X C j k D j k sum^ j C j L X D j = sum^ j k X vol . i j k sum^ j C j L X D j = sum^ j k X vol . j k X C j k D j k j k
170 159 169 anbi12d i = j k X C j k D j k A j k X . i j k sum^ j C j L X D j = sum^ j k X vol . i j k A j k X . j k X C j k D j k j k sum^ j C j L X D j = sum^ j k X vol . j k X C j k D j k j k
171 170 rspcev j k X C j k D j k 2 X A j k X . j k X C j k D j k j k sum^ j C j L X D j = sum^ j k X vol . j k X C j k D j k j k i 2 X A j k X . i j k sum^ j C j L X D j = sum^ j k X vol . i j k
172 90 143 171 syl2anc φ X i 2 X A j k X . i j k sum^ j C j L X D j = sum^ j k X vol . i j k
173 76 172 jca φ X sum^ j C j L X D j * i 2 X A j k X . i j k sum^ j C j L X D j = sum^ j k X vol . i j k
174 eqeq1 z = sum^ j C j L X D j z = sum^ j k X vol . i j k sum^ j C j L X D j = sum^ j k X vol . i j k
175 174 anbi2d z = sum^ j C j L X D j A j k X . i j k z = sum^ j k X vol . i j k A j k X . i j k sum^ j C j L X D j = sum^ j k X vol . i j k
176 175 rexbidv z = sum^ j C j L X D j i 2 X A j k X . i j k z = sum^ j k X vol . i j k i 2 X A j k X . i j k sum^ j C j L X D j = sum^ j k X vol . i j k
177 176 elrab sum^ j C j L X D j z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k sum^ j C j L X D j * i 2 X A j k X . i j k sum^ j C j L X D j = sum^ j k X vol . i j k
178 173 177 sylibr φ X sum^ j C j L X D j z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k
179 infxrlb z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k * sum^ j C j L X D j z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k sup z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k * < sum^ j C j L X D j
180 74 178 179 syl2anc φ X sup z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k * < sum^ j C j L X D j
181 72 180 eqbrtrd φ X voln* X A sum^ j C j L X D j
182 48 50 181 syl2anc φ ¬ X = voln* X A sum^ j C j L X D j
183 47 182 pm2.61dan φ voln* X A sum^ j C j L X D j