Metamath Proof Explorer


Theorem ovolval5lem1

Description: |- ( ph -> ( sum^( n e. NN |-> ( vol( ( A - ( W / ( 2 ^ n ) ) ) (,) B ) ) ) ) <_ ( ( sum^( n e. NN |-> ( vol( A [,) B ) ) ) ) +e W ) ) . (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses ovolval5lem1.a φnA
ovolval5lem1.b φnB
ovolval5lem1.w φW+
ovolval5lem1.c C=n|A<B
Assertion ovolval5lem1 φsum^nvolAW2nBsum^nvolAB+𝑒W

Proof

Step Hyp Ref Expression
1 ovolval5lem1.a φnA
2 ovolval5lem1.b φnB
3 ovolval5lem1.w φW+
4 ovolval5lem1.c C=n|A<B
5 nfv nφ
6 nnex V
7 6 a1i φV
8 volf vol:domvol0+∞
9 8 a1i φnvol:domvol0+∞
10 ioombl AW2nBdomvol
11 10 a1i φnAW2nBdomvol
12 9 11 ffvelcdmd φnvolAW2nB0+∞
13 5 7 12 sge0xrclmpt φsum^nvolAW2nB*
14 0xr 0*
15 14 a1i φn0*
16 pnfxr +∞*
17 16 a1i φn+∞*
18 volicore ABvolAB
19 1 2 18 syl2anc φnvolAB
20 3 rpred φW
21 20 adantr φnW
22 2nn 2
23 22 a1i n2
24 nnnn0 nn0
25 nnexpcl 2n02n
26 23 24 25 syl2anc n2n
27 26 nnred n2n
28 27 adantl φn2n
29 26 nnne0d n2n0
30 29 adantl φn2n0
31 21 28 30 redivcld φnW2n
32 19 31 readdcld φnvolAB+W2n
33 32 rexrd φnvolAB+W2n*
34 2 rexrd φnB*
35 icombl AB*ABdomvol
36 1 34 35 syl2anc φnABdomvol
37 volge0 ABdomvol0volAB
38 36 37 syl φn0volAB
39 3 adantr φnW+
40 26 nnrpd n2n+
41 40 adantl φn2n+
42 39 41 rpdivcld φnW2n+
43 42 rpge0d φn0W2n
44 19 31 38 43 addge0d φn0volAB+W2n
45 rexr volAB+W2nvolAB+W2n*
46 16 a1i volAB+W2n+∞*
47 ltpnf volAB+W2nvolAB+W2n<+∞
48 45 46 47 xrltled volAB+W2nvolAB+W2n+∞
49 32 48 syl φnvolAB+W2n+∞
50 15 17 33 44 49 eliccxrd φnvolAB+W2n0+∞
51 5 7 50 sge0xrclmpt φsum^nvolAB+W2n*
52 9 36 ffvelcdmd φnvolAB0+∞
53 5 7 52 sge0xrclmpt φsum^nvolAB*
54 20 rexrd φW*
55 53 54 xaddcld φsum^nvolAB+𝑒W*
56 1 31 resubcld φnAW2n
57 volioore AW2nBvolAW2nB=ifAW2nBBAW2n0
58 56 2 57 syl2anc φnvolAW2nB=ifAW2nBBAW2n0
59 58 adantr φnAW2nBvolAW2nB=ifAW2nBBAW2n0
60 iftrue AW2nBifAW2nBBAW2n0=BAW2n
61 60 adantl φnAW2nBifAW2nBBAW2n0=BAW2n
62 2 recnd φnB
63 1 recnd φnA
64 31 recnd φnW2n
65 62 63 64 subsubd φnBAW2n=B-A+W2n
66 65 adantr φnAW2nBBAW2n=B-A+W2n
67 59 61 66 3eqtrd φnAW2nBvolAW2nB=B-A+W2n
68 2 1 resubcld φnBA
69 1 2 sublevolico φnBAvolAB
70 68 19 31 69 leadd1dd φnB-A+W2nvolAB+W2n
71 70 adantr φnAW2nBB-A+W2nvolAB+W2n
72 67 71 eqbrtrd φnAW2nBvolAW2nBvolAB+W2n
73 58 adantr φn¬AW2nBvolAW2nB=ifAW2nBBAW2n0
74 iffalse ¬AW2nBifAW2nBBAW2n0=0
75 74 adantl φn¬AW2nBifAW2nBBAW2n0=0
76 73 75 eqtrd φn¬AW2nBvolAW2nB=0
77 44 adantr φn¬AW2nB0volAB+W2n
78 76 77 eqbrtrd φn¬AW2nBvolAW2nBvolAB+W2n
79 72 78 pm2.61dan φnvolAW2nBvolAB+W2n
80 5 7 12 50 79 sge0lempt φsum^nvolAW2nBsum^nvolAB+W2n
81 19 31 rexaddd φnvolAB+𝑒W2n=volAB+W2n
82 81 eqcomd φnvolAB+W2n=volAB+𝑒W2n
83 82 mpteq2dva φnvolAB+W2n=nvolAB+𝑒W2n
84 83 fveq2d φsum^nvolAB+W2n=sum^nvolAB+𝑒W2n
85 31 rexrd φnW2n*
86 rexr W2nW2n*
87 16 a1i W2n+∞*
88 ltpnf W2nW2n<+∞
89 86 87 88 xrltled W2nW2n+∞
90 31 89 syl φnW2n+∞
91 15 17 85 43 90 eliccxrd φnW2n0+∞
92 5 7 52 91 sge0xadd φsum^nvolAB+𝑒W2n=sum^nvolAB+𝑒sum^nW2n
93 14 a1i φ0*
94 16 a1i φ+∞*
95 3 rpge0d φ0W
96 20 ltpnfd φW<+∞
97 93 94 54 95 96 elicod φW0+∞
98 97 sge0ad2en φsum^nW2n=W
99 98 oveq2d φsum^nvolAB+𝑒sum^nW2n=sum^nvolAB+𝑒W
100 84 92 99 3eqtrd φsum^nvolAB+W2n=sum^nvolAB+𝑒W
101 51 100 xreqled φsum^nvolAB+W2nsum^nvolAB+𝑒W
102 13 51 55 80 101 xrletrd φsum^nvolAW2nBsum^nvolAB+𝑒W