Metamath Proof Explorer


Theorem pcpremul

Description: Multiplicative property of the prime count pre-function. Note that the primality of P is essential for this property; ( 4 pCnt 2 ) = 0 but ( 4 pCnt ( 2 x. 2 ) ) = 1 =/= 2 x. ( 4 pCnt 2 ) = 0 . Since this is needed to show uniqueness for the real prime count function (over QQ ), we don't bother to define it off the primes. (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Hypotheses pcpremul.1 S = sup n 0 | P n M <
pcpremul.2 T = sup n 0 | P n N <
pcpremul.3 U = sup n 0 | P n M N <
Assertion pcpremul P M M 0 N N 0 S + T = U

Proof

Step Hyp Ref Expression
1 pcpremul.1 S = sup n 0 | P n M <
2 pcpremul.2 T = sup n 0 | P n N <
3 pcpremul.3 U = sup n 0 | P n M N <
4 prmuz2 P P 2
5 4 3ad2ant1 P M M 0 N N 0 P 2
6 zmulcl M N M N
7 6 ad2ant2r M M 0 N N 0 M N
8 7 3adant1 P M M 0 N N 0 M N
9 zcn M M
10 9 anim1i M M 0 M M 0
11 zcn N N
12 11 anim1i N N 0 N N 0
13 mulne0 M M 0 N N 0 M N 0
14 10 12 13 syl2an M M 0 N N 0 M N 0
15 14 3adant1 P M M 0 N N 0 M N 0
16 eqid n 0 | P n M N = n 0 | P n M N
17 16 pclem P 2 M N M N 0 n 0 | P n M N n 0 | P n M N x y n 0 | P n M N y x
18 5 8 15 17 syl12anc P M M 0 N N 0 n 0 | P n M N n 0 | P n M N x y n 0 | P n M N y x
19 18 simp1d P M M 0 N N 0 n 0 | P n M N
20 18 simp3d P M M 0 N N 0 x y n 0 | P n M N y x
21 oveq2 x = S + T P x = P S + T
22 21 breq1d x = S + T P x M N P S + T M N
23 simp2l P M M 0 N N 0 M
24 simp2r P M M 0 N N 0 M 0
25 eqid n 0 | P n M = n 0 | P n M
26 25 1 pcprecl P 2 M M 0 S 0 P S M
27 5 23 24 26 syl12anc P M M 0 N N 0 S 0 P S M
28 27 simpld P M M 0 N N 0 S 0
29 simp3l P M M 0 N N 0 N
30 simp3r P M M 0 N N 0 N 0
31 eqid n 0 | P n N = n 0 | P n N
32 31 2 pcprecl P 2 N N 0 T 0 P T N
33 5 29 30 32 syl12anc P M M 0 N N 0 T 0 P T N
34 33 simpld P M M 0 N N 0 T 0
35 28 34 nn0addcld P M M 0 N N 0 S + T 0
36 prmnn P P
37 36 3ad2ant1 P M M 0 N N 0 P
38 37 nncnd P M M 0 N N 0 P
39 38 34 28 expaddd P M M 0 N N 0 P S + T = P S P T
40 27 simprd P M M 0 N N 0 P S M
41 37 28 nnexpcld P M M 0 N N 0 P S
42 41 nnzd P M M 0 N N 0 P S
43 37 34 nnexpcld P M M 0 N N 0 P T
44 43 nnzd P M M 0 N N 0 P T
45 dvdsmulc P S M P T P S M P S P T M P T
46 42 23 44 45 syl3anc P M M 0 N N 0 P S M P S P T M P T
47 40 46 mpd P M M 0 N N 0 P S P T M P T
48 39 47 eqbrtrd P M M 0 N N 0 P S + T M P T
49 33 simprd P M M 0 N N 0 P T N
50 dvdscmul P T N M P T N M P T M N
51 44 29 23 50 syl3anc P M M 0 N N 0 P T N M P T M N
52 49 51 mpd P M M 0 N N 0 M P T M N
53 37 35 nnexpcld P M M 0 N N 0 P S + T
54 53 nnzd P M M 0 N N 0 P S + T
55 23 44 zmulcld P M M 0 N N 0 M P T
56 dvdstr P S + T M P T M N P S + T M P T M P T M N P S + T M N
57 54 55 8 56 syl3anc P M M 0 N N 0 P S + T M P T M P T M N P S + T M N
58 48 52 57 mp2and P M M 0 N N 0 P S + T M N
59 22 35 58 elrabd P M M 0 N N 0 S + T x 0 | P x M N
60 oveq2 x = n P x = P n
61 60 breq1d x = n P x M N P n M N
62 61 cbvrabv x 0 | P x M N = n 0 | P n M N
63 59 62 eleqtrdi P M M 0 N N 0 S + T n 0 | P n M N
64 suprzub n 0 | P n M N x y n 0 | P n M N y x S + T n 0 | P n M N S + T sup n 0 | P n M N <
65 19 20 63 64 syl3anc P M M 0 N N 0 S + T sup n 0 | P n M N <
66 65 3 breqtrrdi P M M 0 N N 0 S + T U
67 25 1 pcprendvds2 P 2 M M 0 ¬ P M P S
68 5 23 24 67 syl12anc P M M 0 N N 0 ¬ P M P S
69 31 2 pcprendvds2 P 2 N N 0 ¬ P N P T
70 5 29 30 69 syl12anc P M M 0 N N 0 ¬ P N P T
71 ioran ¬ P M P S P N P T ¬ P M P S ¬ P N P T
72 68 70 71 sylanbrc P M M 0 N N 0 ¬ P M P S P N P T
73 simp1 P M M 0 N N 0 P
74 41 nnne0d P M M 0 N N 0 P S 0
75 dvdsval2 P S P S 0 M P S M M P S
76 42 74 23 75 syl3anc P M M 0 N N 0 P S M M P S
77 40 76 mpbid P M M 0 N N 0 M P S
78 43 nnne0d P M M 0 N N 0 P T 0
79 dvdsval2 P T P T 0 N P T N N P T
80 44 78 29 79 syl3anc P M M 0 N N 0 P T N N P T
81 49 80 mpbid P M M 0 N N 0 N P T
82 euclemma P M P S N P T P M P S N P T P M P S P N P T
83 73 77 81 82 syl3anc P M M 0 N N 0 P M P S N P T P M P S P N P T
84 72 83 mtbird P M M 0 N N 0 ¬ P M P S N P T
85 16 3 pcprecl P 2 M N M N 0 U 0 P U M N
86 5 8 15 85 syl12anc P M M 0 N N 0 U 0 P U M N
87 86 simpld P M M 0 N N 0 U 0
88 nn0ltp1le S + T 0 U 0 S + T < U S + T + 1 U
89 35 87 88 syl2anc P M M 0 N N 0 S + T < U S + T + 1 U
90 37 nnzd P M M 0 N N 0 P
91 peano2nn0 S + T 0 S + T + 1 0
92 35 91 syl P M M 0 N N 0 S + T + 1 0
93 dvdsexp P S + T + 1 0 U S + T + 1 P S + T + 1 P U
94 93 3expia P S + T + 1 0 U S + T + 1 P S + T + 1 P U
95 90 92 94 syl2anc P M M 0 N N 0 U S + T + 1 P S + T + 1 P U
96 86 simprd P M M 0 N N 0 P U M N
97 37 92 nnexpcld P M M 0 N N 0 P S + T + 1
98 97 nnzd P M M 0 N N 0 P S + T + 1
99 37 87 nnexpcld P M M 0 N N 0 P U
100 99 nnzd P M M 0 N N 0 P U
101 dvdstr P S + T + 1 P U M N P S + T + 1 P U P U M N P S + T + 1 M N
102 98 100 8 101 syl3anc P M M 0 N N 0 P S + T + 1 P U P U M N P S + T + 1 M N
103 96 102 mpan2d P M M 0 N N 0 P S + T + 1 P U P S + T + 1 M N
104 95 103 syld P M M 0 N N 0 U S + T + 1 P S + T + 1 M N
105 92 nn0zd P M M 0 N N 0 S + T + 1
106 87 nn0zd P M M 0 N N 0 U
107 eluz S + T + 1 U U S + T + 1 S + T + 1 U
108 105 106 107 syl2anc P M M 0 N N 0 U S + T + 1 S + T + 1 U
109 38 35 expp1d P M M 0 N N 0 P S + T + 1 = P S + T P
110 23 zcnd P M M 0 N N 0 M
111 29 zcnd P M M 0 N N 0 N
112 110 111 mulcld P M M 0 N N 0 M N
113 53 nncnd P M M 0 N N 0 P S + T
114 53 nnne0d P M M 0 N N 0 P S + T 0
115 112 113 114 divcan2d P M M 0 N N 0 P S + T M N P S + T = M N
116 39 oveq2d P M M 0 N N 0 M N P S + T = M N P S P T
117 41 nncnd P M M 0 N N 0 P S
118 43 nncnd P M M 0 N N 0 P T
119 110 117 111 118 74 78 divmuldivd P M M 0 N N 0 M P S N P T = M N P S P T
120 116 119 eqtr4d P M M 0 N N 0 M N P S + T = M P S N P T
121 120 oveq2d P M M 0 N N 0 P S + T M N P S + T = P S + T M P S N P T
122 115 121 eqtr3d P M M 0 N N 0 M N = P S + T M P S N P T
123 109 122 breq12d P M M 0 N N 0 P S + T + 1 M N P S + T P P S + T M P S N P T
124 77 81 zmulcld P M M 0 N N 0 M P S N P T
125 dvdscmulr P M P S N P T P S + T P S + T 0 P S + T P P S + T M P S N P T P M P S N P T
126 90 124 54 114 125 syl112anc P M M 0 N N 0 P S + T P P S + T M P S N P T P M P S N P T
127 123 126 bitrd P M M 0 N N 0 P S + T + 1 M N P M P S N P T
128 104 108 127 3imtr3d P M M 0 N N 0 S + T + 1 U P M P S N P T
129 89 128 sylbid P M M 0 N N 0 S + T < U P M P S N P T
130 84 129 mtod P M M 0 N N 0 ¬ S + T < U
131 35 nn0red P M M 0 N N 0 S + T
132 87 nn0red P M M 0 N N 0 U
133 131 132 eqleltd P M M 0 N N 0 S + T = U S + T U ¬ S + T < U
134 66 130 133 mpbir2and P M M 0 N N 0 S + T = U