Metamath Proof Explorer


Theorem pcpremul

Description: Multiplicative property of the prime count pre-function. Note that the primality of P is essential for this property; ( 4 pCnt 2 ) = 0 but ( 4 pCnt ( 2 x. 2 ) ) = 1 =/= 2 x. ( 4 pCnt 2 ) = 0 . Since this is needed to show uniqueness for the real prime count function (over QQ ), we don't bother to define it off the primes. (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Hypotheses pcpremul.1 S=supn0|PnM<
pcpremul.2 T=supn0|PnN<
pcpremul.3 U=supn0|Pn M N<
Assertion pcpremul PMM0NN0S+T=U

Proof

Step Hyp Ref Expression
1 pcpremul.1 S=supn0|PnM<
2 pcpremul.2 T=supn0|PnN<
3 pcpremul.3 U=supn0|Pn M N<
4 prmuz2 PP2
5 4 3ad2ant1 PMM0NN0P2
6 zmulcl MN M N
7 6 ad2ant2r MM0NN0 M N
8 7 3adant1 PMM0NN0 M N
9 zcn MM
10 9 anim1i MM0MM0
11 zcn NN
12 11 anim1i NN0NN0
13 mulne0 MM0NN0 M N0
14 10 12 13 syl2an MM0NN0 M N0
15 14 3adant1 PMM0NN0 M N0
16 eqid n0|Pn M N=n0|Pn M N
17 16 pclem P2 M N M N0n0|Pn M Nn0|Pn M Nxyn0|Pn M Nyx
18 5 8 15 17 syl12anc PMM0NN0n0|Pn M Nn0|Pn M Nxyn0|Pn M Nyx
19 18 simp1d PMM0NN0n0|Pn M N
20 18 simp3d PMM0NN0xyn0|Pn M Nyx
21 oveq2 x=S+TPx=PS+T
22 21 breq1d x=S+TPx M NPS+T M N
23 simp2l PMM0NN0M
24 simp2r PMM0NN0M0
25 eqid n0|PnM=n0|PnM
26 25 1 pcprecl P2MM0S0PSM
27 5 23 24 26 syl12anc PMM0NN0S0PSM
28 27 simpld PMM0NN0S0
29 simp3l PMM0NN0N
30 simp3r PMM0NN0N0
31 eqid n0|PnN=n0|PnN
32 31 2 pcprecl P2NN0T0PTN
33 5 29 30 32 syl12anc PMM0NN0T0PTN
34 33 simpld PMM0NN0T0
35 28 34 nn0addcld PMM0NN0S+T0
36 prmnn PP
37 36 3ad2ant1 PMM0NN0P
38 37 35 nnexpcld PMM0NN0PS+T
39 38 nnzd PMM0NN0PS+T
40 37 34 nnexpcld PMM0NN0PT
41 40 nnzd PMM0NN0PT
42 23 41 zmulcld PMM0NN0MPT
43 37 nncnd PMM0NN0P
44 43 34 28 expaddd PMM0NN0PS+T=PSPT
45 27 simprd PMM0NN0PSM
46 37 28 nnexpcld PMM0NN0PS
47 46 nnzd PMM0NN0PS
48 dvdsmulc PSMPTPSMPSPTMPT
49 47 23 41 48 syl3anc PMM0NN0PSMPSPTMPT
50 45 49 mpd PMM0NN0PSPTMPT
51 44 50 eqbrtrd PMM0NN0PS+TMPT
52 33 simprd PMM0NN0PTN
53 dvdscmul PTNMPTNMPT M N
54 41 29 23 53 syl3anc PMM0NN0PTNMPT M N
55 52 54 mpd PMM0NN0MPT M N
56 39 42 8 51 55 dvdstrd PMM0NN0PS+T M N
57 22 35 56 elrabd PMM0NN0S+Tx0|Px M N
58 oveq2 x=nPx=Pn
59 58 breq1d x=nPx M NPn M N
60 59 cbvrabv x0|Px M N=n0|Pn M N
61 57 60 eleqtrdi PMM0NN0S+Tn0|Pn M N
62 suprzub n0|Pn M Nxyn0|Pn M NyxS+Tn0|Pn M NS+Tsupn0|Pn M N<
63 19 20 61 62 syl3anc PMM0NN0S+Tsupn0|Pn M N<
64 63 3 breqtrrdi PMM0NN0S+TU
65 25 1 pcprendvds2 P2MM0¬PMPS
66 5 23 24 65 syl12anc PMM0NN0¬PMPS
67 31 2 pcprendvds2 P2NN0¬PNPT
68 5 29 30 67 syl12anc PMM0NN0¬PNPT
69 ioran ¬PMPSPNPT¬PMPS¬PNPT
70 66 68 69 sylanbrc PMM0NN0¬PMPSPNPT
71 simp1 PMM0NN0P
72 46 nnne0d PMM0NN0PS0
73 dvdsval2 PSPS0MPSMMPS
74 47 72 23 73 syl3anc PMM0NN0PSMMPS
75 45 74 mpbid PMM0NN0MPS
76 40 nnne0d PMM0NN0PT0
77 dvdsval2 PTPT0NPTNNPT
78 41 76 29 77 syl3anc PMM0NN0PTNNPT
79 52 78 mpbid PMM0NN0NPT
80 euclemma PMPSNPTPMPSNPTPMPSPNPT
81 71 75 79 80 syl3anc PMM0NN0PMPSNPTPMPSPNPT
82 70 81 mtbird PMM0NN0¬PMPSNPT
83 16 3 pcprecl P2 M N M N0U0PU M N
84 5 8 15 83 syl12anc PMM0NN0U0PU M N
85 84 simpld PMM0NN0U0
86 nn0ltp1le S+T0U0S+T<US+T+1U
87 35 85 86 syl2anc PMM0NN0S+T<US+T+1U
88 37 nnzd PMM0NN0P
89 peano2nn0 S+T0S+T+10
90 35 89 syl PMM0NN0S+T+10
91 dvdsexp PS+T+10US+T+1PS+T+1PU
92 91 3expia PS+T+10US+T+1PS+T+1PU
93 88 90 92 syl2anc PMM0NN0US+T+1PS+T+1PU
94 84 simprd PMM0NN0PU M N
95 37 90 nnexpcld PMM0NN0PS+T+1
96 95 nnzd PMM0NN0PS+T+1
97 37 85 nnexpcld PMM0NN0PU
98 97 nnzd PMM0NN0PU
99 dvdstr PS+T+1PU M NPS+T+1PUPU M NPS+T+1 M N
100 96 98 8 99 syl3anc PMM0NN0PS+T+1PUPU M NPS+T+1 M N
101 94 100 mpan2d PMM0NN0PS+T+1PUPS+T+1 M N
102 93 101 syld PMM0NN0US+T+1PS+T+1 M N
103 90 nn0zd PMM0NN0S+T+1
104 85 nn0zd PMM0NN0U
105 eluz S+T+1UUS+T+1S+T+1U
106 103 104 105 syl2anc PMM0NN0US+T+1S+T+1U
107 43 35 expp1d PMM0NN0PS+T+1=PS+TP
108 23 zcnd PMM0NN0M
109 29 zcnd PMM0NN0N
110 108 109 mulcld PMM0NN0 M N
111 38 nncnd PMM0NN0PS+T
112 38 nnne0d PMM0NN0PS+T0
113 110 111 112 divcan2d PMM0NN0PS+T M NPS+T= M N
114 44 oveq2d PMM0NN0 M NPS+T= M NPSPT
115 46 nncnd PMM0NN0PS
116 40 nncnd PMM0NN0PT
117 108 115 109 116 72 76 divmuldivd PMM0NN0MPSNPT= M NPSPT
118 114 117 eqtr4d PMM0NN0 M NPS+T=MPSNPT
119 118 oveq2d PMM0NN0PS+T M NPS+T=PS+TMPSNPT
120 113 119 eqtr3d PMM0NN0 M N=PS+TMPSNPT
121 107 120 breq12d PMM0NN0PS+T+1 M NPS+TPPS+TMPSNPT
122 75 79 zmulcld PMM0NN0MPSNPT
123 dvdscmulr PMPSNPTPS+TPS+T0PS+TPPS+TMPSNPTPMPSNPT
124 88 122 39 112 123 syl112anc PMM0NN0PS+TPPS+TMPSNPTPMPSNPT
125 121 124 bitrd PMM0NN0PS+T+1 M NPMPSNPT
126 102 106 125 3imtr3d PMM0NN0S+T+1UPMPSNPT
127 87 126 sylbid PMM0NN0S+T<UPMPSNPT
128 82 127 mtod PMM0NN0¬S+T<U
129 35 nn0red PMM0NN0S+T
130 85 nn0red PMM0NN0U
131 129 130 eqleltd PMM0NN0S+T=US+TU¬S+T<U
132 64 128 131 mpbir2and PMM0NN0S+T=U