Metamath Proof Explorer


Theorem pi1grplem

Description: Lemma for pi1grp . (Contributed by Jeff Madsen, 11-Jun-2010) (Revised by Mario Carneiro, 10-Aug-2015)

Ref Expression
Hypotheses pi1fval.g G=Jπ1Y
pi1fval.b B=BaseG
pi1fval.3 φJTopOnX
pi1fval.4 φYX
pi1grplem.z 0˙=01×Y
Assertion pi1grplem φGGrp0˙phJ=0G

Proof

Step Hyp Ref Expression
1 pi1fval.g G=Jπ1Y
2 pi1fval.b B=BaseG
3 pi1fval.3 φJTopOnX
4 pi1fval.4 φYX
5 pi1grplem.z 0˙=01×Y
6 eqid JΩ1Y=JΩ1Y
7 1 3 4 6 pi1val φG=JΩ1Y/𝑠phJ
8 2 a1i φB=BaseG
9 eqidd φBaseJΩ1Y=BaseJΩ1Y
10 1 3 4 6 8 9 pi1buni φB=BaseJΩ1Y
11 fvexd φphJV
12 ovexd φJΩ1YV
13 1 3 4 6 8 10 pi1blem φphJBBBIICnJ
14 13 simpld φphJBB
15 7 10 11 12 14 qusin φG=JΩ1Y/𝑠phJB×B
16 6 3 4 om1plusg φ*𝑝J=+JΩ1Y
17 phtpcer phJErIICnJ
18 17 a1i φphJErIICnJ
19 13 simprd φBIICnJ
20 18 19 erinxp φphJB×BErB
21 eqid phJB×B=phJB×B
22 eqid +JΩ1Y=+JΩ1Y
23 1 3 4 8 21 6 22 pi1cpbl φaphJB×BcbphJB×Bda+JΩ1YbphJB×Bc+JΩ1Yd
24 16 oveqd φa*𝑝Jb=a+JΩ1Yb
25 16 oveqd φc*𝑝Jd=c+JΩ1Yd
26 24 25 breq12d φa*𝑝JbphJB×Bc*𝑝Jda+JΩ1YbphJB×Bc+JΩ1Yd
27 23 26 sylibrd φaphJB×BcbphJB×Bda*𝑝JbphJB×Bc*𝑝Jd
28 3 3ad2ant1 φxByBJTopOnX
29 4 3ad2ant1 φxByBYX
30 10 3ad2ant1 φxByBB=BaseJΩ1Y
31 simp2 φxByBxB
32 simp3 φxByByB
33 6 28 29 30 31 32 om1addcl φxByBx*𝑝JyB
34 3 adantr φxByBzBJTopOnX
35 4 adantr φxByBzBYX
36 10 adantr φxByBzBB=BaseJΩ1Y
37 33 3adant3r3 φxByBzBx*𝑝JyB
38 simpr3 φxByBzBzB
39 6 34 35 36 37 38 om1addcl φxByBzBx*𝑝Jy*𝑝JzB
40 simpr1 φxByBzBxB
41 simpr2 φxByBzByB
42 6 34 35 36 41 38 om1addcl φxByBzBy*𝑝JzB
43 6 34 35 36 40 42 om1addcl φxByBzBx*𝑝Jy*𝑝JzB
44 1 3 4 8 pi1eluni φxBxIICnJx0=Yx1=Y
45 44 biimpa φxBxIICnJx0=Yx1=Y
46 45 3ad2antr1 φxByBzBxIICnJx0=Yx1=Y
47 46 simp1d φxByBzBxIICnJ
48 2 a1i φxByBzBB=BaseG
49 1 34 35 48 pi1eluni φxByBzByByIICnJy0=Yy1=Y
50 41 49 mpbid φxByBzByIICnJy0=Yy1=Y
51 50 simp1d φxByBzByIICnJ
52 1 34 35 48 pi1eluni φxByBzBzBzIICnJz0=Yz1=Y
53 38 52 mpbid φxByBzBzIICnJz0=Yz1=Y
54 53 simp1d φxByBzBzIICnJ
55 46 simp3d φxByBzBx1=Y
56 50 simp2d φxByBzBy0=Y
57 55 56 eqtr4d φxByBzBx1=y0
58 50 simp3d φxByBzBy1=Y
59 53 simp2d φxByBzBz0=Y
60 58 59 eqtr4d φxByBzBy1=z0
61 eqid u01ifu12ifu142uu+14u2+12=u01ifu12ifu142uu+14u2+12
62 47 51 54 57 60 61 pcoass φxByBzBx*𝑝Jy*𝑝JzphJx*𝑝Jy*𝑝Jz
63 brinxp2 x*𝑝Jy*𝑝JzphJB×Bx*𝑝Jy*𝑝Jzx*𝑝Jy*𝑝JzBx*𝑝Jy*𝑝JzBx*𝑝Jy*𝑝JzphJx*𝑝Jy*𝑝Jz
64 39 43 62 63 syl21anbrc φxByBzBx*𝑝Jy*𝑝JzphJB×Bx*𝑝Jy*𝑝Jz
65 5 pcoptcl JTopOnXYX0˙IICnJ0˙0=Y0˙1=Y
66 3 4 65 syl2anc φ0˙IICnJ0˙0=Y0˙1=Y
67 1 3 4 8 pi1eluni φ0˙B0˙IICnJ0˙0=Y0˙1=Y
68 66 67 mpbird φ0˙B
69 3 adantr φxBJTopOnX
70 4 adantr φxBYX
71 10 adantr φxBB=BaseJΩ1Y
72 68 adantr φxB0˙B
73 simpr φxBxB
74 6 69 70 71 72 73 om1addcl φxB0˙*𝑝JxB
75 19 sselda φxBxIICnJ
76 45 simp2d φxBx0=Y
77 5 pcopt xIICnJx0=Y0˙*𝑝JxphJx
78 75 76 77 syl2anc φxB0˙*𝑝JxphJx
79 brinxp2 0˙*𝑝JxphJB×Bx0˙*𝑝JxBxB0˙*𝑝JxphJx
80 74 73 78 79 syl21anbrc φxB0˙*𝑝JxphJB×Bx
81 eqid a01x1a=a01x1a
82 81 pcorevcl xIICnJa01x1aIICnJa01x1a0=x1a01x1a1=x0
83 75 82 syl φxBa01x1aIICnJa01x1a0=x1a01x1a1=x0
84 83 simp1d φxBa01x1aIICnJ
85 83 simp2d φxBa01x1a0=x1
86 45 simp3d φxBx1=Y
87 85 86 eqtrd φxBa01x1a0=Y
88 83 simp3d φxBa01x1a1=x0
89 88 76 eqtrd φxBa01x1a1=Y
90 1 3 4 8 pi1eluni φa01x1aBa01x1aIICnJa01x1a0=Ya01x1a1=Y
91 90 adantr φxBa01x1aBa01x1aIICnJa01x1a0=Ya01x1a1=Y
92 84 87 89 91 mpbir3and φxBa01x1aB
93 6 69 70 71 92 73 om1addcl φxBa01x1a*𝑝JxB
94 eqid 01×x1=01×x1
95 81 94 pcorev xIICnJa01x1a*𝑝JxphJ01×x1
96 75 95 syl φxBa01x1a*𝑝JxphJ01×x1
97 86 sneqd φxBx1=Y
98 97 xpeq2d φxB01×x1=01×Y
99 5 98 eqtr4id φxB0˙=01×x1
100 96 99 breqtrrd φxBa01x1a*𝑝JxphJ0˙
101 brinxp2 a01x1a*𝑝JxphJB×B0˙a01x1a*𝑝JxB0˙Ba01x1a*𝑝JxphJ0˙
102 93 72 100 101 syl21anbrc φxBa01x1a*𝑝JxphJB×B0˙
103 15 10 16 20 12 27 33 64 68 80 92 102 qusgrp2 φGGrp0˙phJB×B=0G
104 ecinxp phJBB0˙B0˙phJ=0˙phJB×B
105 14 68 104 syl2anc φ0˙phJ=0˙phJB×B
106 105 eqeq1d φ0˙phJ=0G0˙phJB×B=0G
107 106 anbi2d φGGrp0˙phJ=0GGGrp0˙phJB×B=0G
108 103 107 mpbird φGGrp0˙phJ=0G