Step |
Hyp |
Ref |
Expression |
1 |
|
pmatcollpw.p |
|
2 |
|
pmatcollpw.c |
|
3 |
|
pmatcollpw.b |
|
4 |
|
pmatcollpw.m |
|
5 |
|
pmatcollpw.e |
|
6 |
|
pmatcollpw.x |
|
7 |
|
pmatcollpw.t |
|
8 |
|
crngring |
|
9 |
8
|
3ad2ant2 |
|
10 |
|
simp3 |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
1 2 3 11 12
|
decpmataa0 |
|
14 |
9 10 13
|
syl2anc |
|
15 |
1 2 3 4 5 6 7
|
pmatcollpw |
|
16 |
15
|
ad2antrr |
|
17 |
|
eqid |
|
18 |
|
simp1 |
|
19 |
1 2
|
pmatring |
|
20 |
18 9 19
|
syl2anc |
|
21 |
|
ringcmn |
|
22 |
20 21
|
syl |
|
23 |
22
|
ad2antrr |
|
24 |
18
|
adantr |
|
25 |
9
|
adantr |
|
26 |
1
|
ply1ring |
|
27 |
25 26
|
syl |
|
28 |
9
|
anim1i |
|
29 |
|
eqid |
|
30 |
|
eqid |
|
31 |
1 6 29 5 30
|
ply1moncl |
|
32 |
28 31
|
syl |
|
33 |
|
simpl2 |
|
34 |
10
|
adantr |
|
35 |
|
simpr |
|
36 |
|
eqid |
|
37 |
1 2 3 11 36
|
decpmatcl |
|
38 |
33 34 35 37
|
syl3anc |
|
39 |
7 11 36 1 2 3
|
mat2pmatbas0 |
|
40 |
24 25 38 39
|
syl3anc |
|
41 |
30 2 3 4
|
matvscl |
|
42 |
24 27 32 40 41
|
syl22anc |
|
43 |
42
|
ralrimiva |
|
44 |
43
|
ad2antrr |
|
45 |
|
simplr |
|
46 |
|
fveq2 |
|
47 |
9 18
|
jca |
|
48 |
47
|
ad2antrr |
|
49 |
|
eqid |
|
50 |
7 1 12 49
|
0mat2pmat |
|
51 |
48 50
|
syl |
|
52 |
46 51
|
sylan9eqr |
|
53 |
52
|
oveq2d |
|
54 |
1 2
|
pmatlmod |
|
55 |
18 9 54
|
syl2anc |
|
56 |
55
|
ad2antrr |
|
57 |
28
|
adantlr |
|
58 |
57 31
|
syl |
|
59 |
1
|
ply1crng |
|
60 |
59
|
anim2i |
|
61 |
60
|
3adant3 |
|
62 |
2
|
matsca2 |
|
63 |
61 62
|
syl |
|
64 |
63
|
eqcomd |
|
65 |
64
|
ad2antrr |
|
66 |
65
|
fveq2d |
|
67 |
58 66
|
eleqtrrd |
|
68 |
2
|
eqcomi |
|
69 |
68
|
fveq2i |
|
70 |
69
|
oveq2i |
|
71 |
|
eqid |
|
72 |
|
eqid |
|
73 |
71 4 72 17
|
lmodvs0 |
|
74 |
70 73
|
eqtrid |
|
75 |
56 67 74
|
syl2anc |
|
76 |
75
|
adantr |
|
77 |
53 76
|
eqtrd |
|
78 |
77
|
ex |
|
79 |
78
|
imim2d |
|
80 |
79
|
ralimdva |
|
81 |
80
|
imp |
|
82 |
3 17 23 44 45 81
|
gsummptnn0fz |
|
83 |
16 82
|
eqtrd |
|
84 |
83
|
ex |
|
85 |
84
|
reximdva |
|
86 |
14 85
|
mpd |
|