| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmatcollpw.p |
|
| 2 |
|
pmatcollpw.c |
|
| 3 |
|
pmatcollpw.b |
|
| 4 |
|
pmatcollpw.m |
|
| 5 |
|
pmatcollpw.e |
|
| 6 |
|
pmatcollpw.x |
|
| 7 |
|
pmatcollpw.t |
|
| 8 |
|
crngring |
|
| 9 |
8
|
3ad2ant2 |
|
| 10 |
|
simp3 |
|
| 11 |
|
eqid |
|
| 12 |
|
eqid |
|
| 13 |
1 2 3 11 12
|
decpmataa0 |
|
| 14 |
9 10 13
|
syl2anc |
|
| 15 |
1 2 3 4 5 6 7
|
pmatcollpw |
|
| 16 |
15
|
ad2antrr |
|
| 17 |
|
eqid |
|
| 18 |
|
simp1 |
|
| 19 |
1 2
|
pmatring |
|
| 20 |
18 9 19
|
syl2anc |
|
| 21 |
|
ringcmn |
|
| 22 |
20 21
|
syl |
|
| 23 |
22
|
ad2antrr |
|
| 24 |
18
|
adantr |
|
| 25 |
9
|
adantr |
|
| 26 |
1
|
ply1ring |
|
| 27 |
25 26
|
syl |
|
| 28 |
9
|
anim1i |
|
| 29 |
|
eqid |
|
| 30 |
|
eqid |
|
| 31 |
1 6 29 5 30
|
ply1moncl |
|
| 32 |
28 31
|
syl |
|
| 33 |
|
simpl2 |
|
| 34 |
10
|
adantr |
|
| 35 |
|
simpr |
|
| 36 |
|
eqid |
|
| 37 |
1 2 3 11 36
|
decpmatcl |
|
| 38 |
33 34 35 37
|
syl3anc |
|
| 39 |
7 11 36 1 2 3
|
mat2pmatbas0 |
|
| 40 |
24 25 38 39
|
syl3anc |
|
| 41 |
30 2 3 4
|
matvscl |
|
| 42 |
24 27 32 40 41
|
syl22anc |
|
| 43 |
42
|
ralrimiva |
|
| 44 |
43
|
ad2antrr |
|
| 45 |
|
simplr |
|
| 46 |
|
fveq2 |
|
| 47 |
9 18
|
jca |
|
| 48 |
47
|
ad2antrr |
|
| 49 |
|
eqid |
|
| 50 |
7 1 12 49
|
0mat2pmat |
|
| 51 |
48 50
|
syl |
|
| 52 |
46 51
|
sylan9eqr |
|
| 53 |
52
|
oveq2d |
|
| 54 |
1 2
|
pmatlmod |
|
| 55 |
18 9 54
|
syl2anc |
|
| 56 |
55
|
ad2antrr |
|
| 57 |
28
|
adantlr |
|
| 58 |
57 31
|
syl |
|
| 59 |
1
|
ply1crng |
|
| 60 |
59
|
anim2i |
|
| 61 |
60
|
3adant3 |
|
| 62 |
2
|
matsca2 |
|
| 63 |
61 62
|
syl |
|
| 64 |
63
|
eqcomd |
|
| 65 |
64
|
ad2antrr |
|
| 66 |
65
|
fveq2d |
|
| 67 |
58 66
|
eleqtrrd |
|
| 68 |
2
|
eqcomi |
|
| 69 |
68
|
fveq2i |
|
| 70 |
69
|
oveq2i |
|
| 71 |
|
eqid |
|
| 72 |
|
eqid |
|
| 73 |
71 4 72 17
|
lmodvs0 |
|
| 74 |
70 73
|
eqtrid |
|
| 75 |
56 67 74
|
syl2anc |
|
| 76 |
75
|
adantr |
|
| 77 |
53 76
|
eqtrd |
|
| 78 |
77
|
ex |
|
| 79 |
78
|
imim2d |
|
| 80 |
79
|
ralimdva |
|
| 81 |
80
|
imp |
|
| 82 |
3 17 23 44 45 81
|
gsummptnn0fz |
|
| 83 |
16 82
|
eqtrd |
|
| 84 |
83
|
ex |
|
| 85 |
84
|
reximdva |
|
| 86 |
14 85
|
mpd |
|