Metamath Proof Explorer


Theorem pntrlog2bnd

Description: A bound on R ( x ) log ^ 2 ( x ) . Equation 10.6.15 of Shapiro, p. 431. (Contributed by Mario Carneiro, 1-Jun-2016)

Ref Expression
Hypothesis pntpbnd.r R=a+ψaa
Assertion pntrlog2bnd A1Ac+x1+∞Rxlogx2logxn=1xARxnlognxc

Proof

Step Hyp Ref Expression
1 pntpbnd.r R=a+ψaa
2 ioossre 1+∞
3 2 a1i A1A1+∞
4 1red A1A1
5 3 sselda A1Ax1+∞x
6 1rp 1+
7 6 a1i A1Ax1+∞1+
8 1red A1Ax1+∞1
9 eliooord x1+∞1<xx<+∞
10 9 adantl A1Ax1+∞1<xx<+∞
11 10 simpld A1Ax1+∞1<x
12 8 5 11 ltled A1Ax1+∞1x
13 5 7 12 rpgecld A1Ax1+∞x+
14 1 pntrf R:+
15 14 ffvelcdmi x+Rx
16 13 15 syl A1Ax1+∞Rx
17 16 recnd A1Ax1+∞Rx
18 17 abscld A1Ax1+∞Rx
19 13 relogcld A1Ax1+∞logx
20 18 19 remulcld A1Ax1+∞Rxlogx
21 2re 2
22 21 a1i A1Ax1+∞2
23 5 11 rplogcld A1Ax1+∞logx+
24 22 23 rerpdivcld A1Ax1+∞2logx
25 fzfid A1Ax1+∞1xAFin
26 13 adantr A1Ax1+∞n1xAx+
27 elfznn n1xAn
28 27 adantl A1Ax1+∞n1xAn
29 28 nnrpd A1Ax1+∞n1xAn+
30 26 29 rpdivcld A1Ax1+∞n1xAxn+
31 14 ffvelcdmi xn+Rxn
32 30 31 syl A1Ax1+∞n1xARxn
33 32 recnd A1Ax1+∞n1xARxn
34 33 abscld A1Ax1+∞n1xARxn
35 29 relogcld A1Ax1+∞n1xAlogn
36 34 35 remulcld A1Ax1+∞n1xARxnlogn
37 25 36 fsumrecl A1Ax1+∞n=1xARxnlogn
38 24 37 remulcld A1Ax1+∞2logxn=1xARxnlogn
39 20 38 resubcld A1Ax1+∞Rxlogx2logxn=1xARxnlogn
40 39 13 rerpdivcld A1Ax1+∞Rxlogx2logxn=1xARxnlognx
41 1 pntrmax c+y+Ryyc
42 eqid ai=1aΛilogi+ψai=ai=1aΛilogi+ψai
43 eqid aifa+aloga0=aifa+aloga0
44 simprl A1Ac+y+Ryycc+
45 simprr A1Ac+y+Ryycy+Ryyc
46 simpll A1Ac+y+RyycA
47 simplr A1Ac+y+Ryyc1A
48 42 1 43 44 45 46 47 pntrlog2bndlem6 A1Ac+y+Ryycx1+∞Rxlogx2logxn=1xARxnlognx𝑂1
49 48 rexlimdvaa A1Ac+y+Ryycx1+∞Rxlogx2logxn=1xARxnlognx𝑂1
50 41 49 mpi A1Ax1+∞Rxlogx2logxn=1xARxnlognx𝑂1
51 simprl A1Ay1yy
52 chpcl yψy
53 51 52 syl A1Ay1yψy
54 53 51 readdcld A1Ay1yψy+y
55 6 a1i A1Ay1y1+
56 simprr A1Ay1y1y
57 51 55 56 rpgecld A1Ay1yy+
58 57 relogcld A1Ay1ylogy
59 54 58 remulcld A1Ay1yψy+ylogy
60 40 adantr A1Ax1+∞y1yx<yRxlogx2logxn=1xARxnlognx
61 53 ad2ant2r A1Ax1+∞y1yx<yψy
62 simprll A1Ax1+∞y1yx<yy
63 61 62 readdcld A1Ax1+∞y1yx<yψy+y
64 57 ad2ant2r A1Ax1+∞y1yx<yy+
65 64 relogcld A1Ax1+∞y1yx<ylogy
66 63 65 remulcld A1Ax1+∞y1yx<yψy+ylogy
67 13 adantr A1Ax1+∞y1yx<yx+
68 66 67 rerpdivcld A1Ax1+∞y1yx<yψy+ylogyx
69 16 adantr A1Ax1+∞y1yx<yRx
70 69 recnd A1Ax1+∞y1yx<yRx
71 70 abscld A1Ax1+∞y1yx<yRx
72 67 relogcld A1Ax1+∞y1yx<ylogx
73 71 72 remulcld A1Ax1+∞y1yx<yRxlogx
74 24 adantr A1Ax1+∞y1yx<y2logx
75 37 adantr A1Ax1+∞y1yx<yn=1xARxnlogn
76 74 75 remulcld A1Ax1+∞y1yx<y2logxn=1xARxnlogn
77 73 76 resubcld A1Ax1+∞y1yx<yRxlogx2logxn=1xARxnlogn
78 21 a1i A1Ax1+∞y1yx<y2
79 5 adantr A1Ax1+∞y1yx<yx
80 11 adantr A1Ax1+∞y1yx<y1<x
81 79 80 rplogcld A1Ax1+∞y1yx<ylogx+
82 2rp 2+
83 82 a1i A1Ax1+∞y1yx<y2+
84 83 rpge0d A1Ax1+∞y1yx<y02
85 78 81 84 divge0d A1Ax1+∞y1yx<y02logx
86 fzfid A1Ax1+∞y1yx<y1xAFin
87 36 adantlr A1Ax1+∞y1yx<yn1xARxnlogn
88 33 adantlr A1Ax1+∞y1yx<yn1xARxn
89 88 abscld A1Ax1+∞y1yx<yn1xARxn
90 29 adantlr A1Ax1+∞y1yx<yn1xAn+
91 90 relogcld A1Ax1+∞y1yx<yn1xAlogn
92 88 absge0d A1Ax1+∞y1yx<yn1xA0Rxn
93 90 rpred A1Ax1+∞y1yx<yn1xAn
94 27 adantl A1Ax1+∞y1yx<yn1xAn
95 94 nnge1d A1Ax1+∞y1yx<yn1xA1n
96 93 95 logge0d A1Ax1+∞y1yx<yn1xA0logn
97 89 91 92 96 mulge0d A1Ax1+∞y1yx<yn1xA0Rxnlogn
98 86 87 97 fsumge0 A1Ax1+∞y1yx<y0n=1xARxnlogn
99 74 75 85 98 mulge0d A1Ax1+∞y1yx<y02logxn=1xARxnlogn
100 73 76 subge02d A1Ax1+∞y1yx<y02logxn=1xARxnlognRxlogx2logxn=1xARxnlognRxlogx
101 99 100 mpbid A1Ax1+∞y1yx<yRxlogx2logxn=1xARxnlognRxlogx
102 70 absge0d A1Ax1+∞y1yx<y0Rx
103 81 rpge0d A1Ax1+∞y1yx<y0logx
104 chpcl xψx
105 79 104 syl A1Ax1+∞y1yx<yψx
106 105 79 readdcld A1Ax1+∞y1yx<yψx+x
107 1 pntrval x+Rx=ψxx
108 67 107 syl A1Ax1+∞y1yx<yRx=ψxx
109 108 fveq2d A1Ax1+∞y1yx<yRx=ψxx
110 105 recnd A1Ax1+∞y1yx<yψx
111 79 recnd A1Ax1+∞y1yx<yx
112 110 111 abs2dif2d A1Ax1+∞y1yx<yψxxψx+x
113 chpge0 x0ψx
114 79 113 syl A1Ax1+∞y1yx<y0ψx
115 105 114 absidd A1Ax1+∞y1yx<yψx=ψx
116 67 rpge0d A1Ax1+∞y1yx<y0x
117 79 116 absidd A1Ax1+∞y1yx<yx=x
118 115 117 oveq12d A1Ax1+∞y1yx<yψx+x=ψx+x
119 112 118 breqtrd A1Ax1+∞y1yx<yψxxψx+x
120 109 119 eqbrtrd A1Ax1+∞y1yx<yRxψx+x
121 simprr A1Ax1+∞y1yx<yx<y
122 79 62 121 ltled A1Ax1+∞y1yx<yxy
123 chpwordi xyxyψxψy
124 79 62 122 123 syl3anc A1Ax1+∞y1yx<yψxψy
125 105 79 61 62 124 122 le2addd A1Ax1+∞y1yx<yψx+xψy+y
126 71 106 63 120 125 letrd A1Ax1+∞y1yx<yRxψy+y
127 67 64 logled A1Ax1+∞y1yx<yxylogxlogy
128 122 127 mpbid A1Ax1+∞y1yx<ylogxlogy
129 71 63 72 65 102 103 126 128 lemul12ad A1Ax1+∞y1yx<yRxlogxψy+ylogy
130 77 73 66 101 129 letrd A1Ax1+∞y1yx<yRxlogx2logxn=1xARxnlognψy+ylogy
131 77 66 67 130 lediv1dd A1Ax1+∞y1yx<yRxlogx2logxn=1xARxnlognxψy+ylogyx
132 6 a1i A1Ax1+∞y1yx<y1+
133 chpge0 y0ψy
134 62 133 syl A1Ax1+∞y1yx<y0ψy
135 64 rpge0d A1Ax1+∞y1yx<y0y
136 61 62 134 135 addge0d A1Ax1+∞y1yx<y0ψy+y
137 simprlr A1Ax1+∞y1yx<y1y
138 62 137 logge0d A1Ax1+∞y1yx<y0logy
139 63 65 136 138 mulge0d A1Ax1+∞y1yx<y0ψy+ylogy
140 12 adantr A1Ax1+∞y1yx<y1x
141 132 67 66 139 140 lediv2ad A1Ax1+∞y1yx<yψy+ylogyxψy+ylogy1
142 61 recnd A1Ax1+∞y1yx<yψy
143 62 recnd A1Ax1+∞y1yx<yy
144 142 143 addcld A1Ax1+∞y1yx<yψy+y
145 65 recnd A1Ax1+∞y1yx<ylogy
146 144 145 mulcld A1Ax1+∞y1yx<yψy+ylogy
147 146 div1d A1Ax1+∞y1yx<yψy+ylogy1=ψy+ylogy
148 141 147 breqtrd A1Ax1+∞y1yx<yψy+ylogyxψy+ylogy
149 60 68 66 131 148 letrd A1Ax1+∞y1yx<yRxlogx2logxn=1xARxnlognxψy+ylogy
150 3 4 40 50 59 149 lo1bddrp A1Ac+x1+∞Rxlogx2logxn=1xARxnlognxc