Metamath Proof Explorer


Theorem prmreclem1

Description: Lemma for prmrec . Properties of the "square part" function, which extracts the m of the decomposition N = r m ^ 2 , with m maximal and r squarefree. (Contributed by Mario Carneiro, 5-Aug-2014)

Ref Expression
Hypothesis prmreclem1.1 Q=nsupr|r2n<
Assertion prmreclem1 NQNQN2NK2¬K2NQN2

Proof

Step Hyp Ref Expression
1 prmreclem1.1 Q=nsupr|r2n<
2 ssrab2 r|r2N
3 breq2 n=Nr2nr2N
4 3 rabbidv n=Nr|r2n=r|r2N
5 4 supeq1d n=Nsupr|r2n<=supr|r2N<
6 ltso <Or
7 6 supex supr|r2N<V
8 5 1 7 fvmpt NQN=supr|r2N<
9 nnssz
10 2 9 sstri r|r2N
11 oveq1 r=1r2=12
12 sq1 12=1
13 11 12 eqtrdi r=1r2=1
14 13 breq1d r=1r2N1N
15 1nn 1
16 15 a1i N1
17 nnz NN
18 1dvds N1N
19 17 18 syl N1N
20 14 16 19 elrabd N1r|r2N
21 20 ne0d Nr|r2N
22 nnz zz
23 zsqcl zz2
24 22 23 syl zz2
25 id NN
26 dvdsle z2Nz2Nz2N
27 24 25 26 syl2anr Nzz2Nz2N
28 nnlesq zzz2
29 28 adantl Nzzz2
30 nnre zz
31 30 adantl Nzz
32 31 resqcld Nzz2
33 nnre NN
34 33 adantr NzN
35 letr zz2Nzz2z2NzN
36 31 32 34 35 syl3anc Nzzz2z2NzN
37 29 36 mpand Nzz2NzN
38 27 37 syld Nzz2NzN
39 38 ralrimiva Nzz2NzN
40 oveq1 r=zr2=z2
41 40 breq1d r=zr2Nz2N
42 41 ralrab zr|r2NzNzz2NzN
43 39 42 sylibr Nzr|r2NzN
44 brralrspcev Nzr|r2NzNxzr|r2Nzx
45 17 43 44 syl2anc Nxzr|r2Nzx
46 suprzcl2 r|r2Nr|r2Nxzr|r2Nzxsupr|r2N<r|r2N
47 10 21 45 46 mp3an2i Nsupr|r2N<r|r2N
48 8 47 eqeltrd NQNr|r2N
49 2 48 sselid NQN
50 oveq1 z=QNz2=QN2
51 50 breq1d z=QNz2NQN2N
52 41 cbvrabv r|r2N=z|z2N
53 51 52 elrab2 QNr|r2NQNQN2N
54 48 53 sylib NQNQN2N
55 54 simprd NQN2N
56 49 adantr NK2QN
57 56 nncnd NK2QN
58 57 mulridd NK2QN1=QN
59 eluz2gt1 K21<K
60 59 adantl NK21<K
61 1red NK21
62 eluz2nn K2K
63 62 adantl NK2K
64 63 nnred NK2K
65 56 nnred NK2QN
66 56 nngt0d NK20<QN
67 ltmul2 1KQN0<QN1<KQN1<QNK
68 61 64 65 66 67 syl112anc NK21<KQN1<QNK
69 60 68 mpbid NK2QN1<QNK
70 58 69 eqbrtrrd NK2QN<QNK
71 nnmulcl QNKQNK
72 49 62 71 syl2an NK2QNK
73 72 nnred NK2QNK
74 65 73 ltnled NK2QN<QNK¬QNKQN
75 70 74 mpbid NK2¬QNKQN
76 45 ad2antrr NK2K2NQN2xzr|r2Nzx
77 oveq1 r=QNKr2=QNK2
78 77 breq1d r=QNKr2NQNK2N
79 72 adantr NK2K2NQN2QNK
80 simpr NK2K2NQN2K2NQN2
81 63 adantr NK2K2NQN2K
82 81 nnsqcld NK2K2NQN2K2
83 nnz K2K2
84 82 83 syl NK2K2NQN2K2
85 49 nnsqcld NQN2
86 9 85 sselid NQN2
87 85 nnne0d NQN20
88 dvdsval2 QN2QN20NQN2NNQN2
89 86 87 17 88 syl3anc NQN2NNQN2
90 55 89 mpbid NNQN2
91 90 ad2antrr NK2K2NQN2NQN2
92 86 ad2antrr NK2K2NQN2QN2
93 dvdscmul K2NQN2QN2K2NQN2QN2K2QN2NQN2
94 84 91 92 93 syl3anc NK2K2NQN2K2NQN2QN2K2QN2NQN2
95 80 94 mpd NK2K2NQN2QN2K2QN2NQN2
96 57 adantr NK2K2NQN2QN
97 81 nncnd NK2K2NQN2K
98 96 97 sqmuld NK2K2NQN2QNK2=QN2K2
99 98 eqcomd NK2K2NQN2QN2K2=QNK2
100 nncn NN
101 100 ad2antrr NK2K2NQN2N
102 85 ad2antrr NK2K2NQN2QN2
103 102 nncnd NK2K2NQN2QN2
104 87 ad2antrr NK2K2NQN2QN20
105 101 103 104 divcan2d NK2K2NQN2QN2NQN2=N
106 95 99 105 3brtr3d NK2K2NQN2QNK2N
107 78 79 106 elrabd NK2K2NQN2QNKr|r2N
108 suprzub r|r2Nxzr|r2NzxQNKr|r2NQNKsupr|r2N<
109 10 76 107 108 mp3an2i NK2K2NQN2QNKsupr|r2N<
110 8 ad2antrr NK2K2NQN2QN=supr|r2N<
111 109 110 breqtrrd NK2K2NQN2QNKQN
112 75 111 mtand NK2¬K2NQN2
113 112 ex NK2¬K2NQN2
114 49 55 113 3jca NQNQN2NK2¬K2NQN2