Metamath Proof Explorer


Theorem pstmxmet

Description: The metric induced by a pseudometric is a full-fledged metric on the equivalence classes of the metric identification. (Contributed by Thierry Arnoux, 11-Feb-2018)

Ref Expression
Hypothesis pstmval.1 ˙=~MetD
Assertion pstmxmet DPsMetXpstoMetD∞MetX/˙

Proof

Step Hyp Ref Expression
1 pstmval.1 ˙=~MetD
2 eqid xX/˙,yX/˙z|axbyz=aDb=xX/˙,yX/˙z|axbyz=aDb
3 vex xV
4 vex yV
5 3 4 ab2rexex z|axbyz=aDbV
6 5 uniex z|axbyz=aDbV
7 2 6 fnmpoi xX/˙,yX/˙z|axbyz=aDbFnX/˙×X/˙
8 1 pstmval DPsMetXpstoMetD=xX/˙,yX/˙z|axbyz=aDb
9 8 fneq1d DPsMetXpstoMetDFnX/˙×X/˙xX/˙,yX/˙z|axbyz=aDbFnX/˙×X/˙
10 7 9 mpbiri DPsMetXpstoMetDFnX/˙×X/˙
11 simpllr DPsMetXxX/˙yX/˙aXx=a˙bXy=b˙x=a˙
12 simpr DPsMetXxX/˙yX/˙aXx=a˙bXy=b˙y=b˙
13 11 12 oveq12d DPsMetXxX/˙yX/˙aXx=a˙bXy=b˙xpstoMetDy=a˙pstoMetDb˙
14 simp-5l DPsMetXxX/˙yX/˙aXx=a˙bXy=b˙DPsMetX
15 simp-4r DPsMetXxX/˙yX/˙aXx=a˙bXy=b˙aX
16 simplr DPsMetXxX/˙yX/˙aXx=a˙bXy=b˙bX
17 1 pstmfval DPsMetXaXbXa˙pstoMetDb˙=aDb
18 14 15 16 17 syl3anc DPsMetXxX/˙yX/˙aXx=a˙bXy=b˙a˙pstoMetDb˙=aDb
19 13 18 eqtrd DPsMetXxX/˙yX/˙aXx=a˙bXy=b˙xpstoMetDy=aDb
20 psmetf DPsMetXD:X×X*
21 14 20 syl DPsMetXxX/˙yX/˙aXx=a˙bXy=b˙D:X×X*
22 21 15 16 fovcdmd DPsMetXxX/˙yX/˙aXx=a˙bXy=b˙aDb*
23 19 22 eqeltrd DPsMetXxX/˙yX/˙aXx=a˙bXy=b˙xpstoMetDy*
24 elqsi yX/˙bXy=b˙
25 24 ad2antll DPsMetXxX/˙yX/˙bXy=b˙
26 25 ad2antrr DPsMetXxX/˙yX/˙aXx=a˙bXy=b˙
27 23 26 r19.29a DPsMetXxX/˙yX/˙aXx=a˙xpstoMetDy*
28 elqsi xX/˙aXx=a˙
29 28 ad2antrl DPsMetXxX/˙yX/˙aXx=a˙
30 27 29 r19.29a DPsMetXxX/˙yX/˙xpstoMetDy*
31 30 ralrimivva DPsMetXxX/˙yX/˙xpstoMetDy*
32 ffnov pstoMetD:X/˙×X/˙*pstoMetDFnX/˙×X/˙xX/˙yX/˙xpstoMetDy*
33 10 31 32 sylanbrc DPsMetXpstoMetD:X/˙×X/˙*
34 17 3expa DPsMetXaXbXa˙pstoMetDb˙=aDb
35 34 eqeq1d DPsMetXaXbXa˙pstoMetDb˙=0aDb=0
36 1 breqi a˙ba~MetDb
37 metidv DPsMetXaXbXa~MetDbaDb=0
38 37 anassrs DPsMetXaXbXa~MetDbaDb=0
39 36 38 bitrid DPsMetXaXbXa˙baDb=0
40 metider DPsMetX~MetDErX
41 40 ad2antrr DPsMetXaXbX~MetDErX
42 ereq1 ˙=~MetD˙ErX~MetDErX
43 1 42 ax-mp ˙ErX~MetDErX
44 41 43 sylibr DPsMetXaXbX˙ErX
45 simplr DPsMetXaXbXaX
46 44 45 erth DPsMetXaXbXa˙ba˙=b˙
47 35 39 46 3bitr2d DPsMetXaXbXa˙pstoMetDb˙=0a˙=b˙
48 47 adantllr DPsMetXxX/˙yX/˙aXbXa˙pstoMetDb˙=0a˙=b˙
49 48 adantlr DPsMetXxX/˙yX/˙aXx=a˙bXa˙pstoMetDb˙=0a˙=b˙
50 49 adantr DPsMetXxX/˙yX/˙aXx=a˙bXy=b˙a˙pstoMetDb˙=0a˙=b˙
51 13 eqeq1d DPsMetXxX/˙yX/˙aXx=a˙bXy=b˙xpstoMetDy=0a˙pstoMetDb˙=0
52 11 12 eqeq12d DPsMetXxX/˙yX/˙aXx=a˙bXy=b˙x=ya˙=b˙
53 50 51 52 3bitr4d DPsMetXxX/˙yX/˙aXx=a˙bXy=b˙xpstoMetDy=0x=y
54 53 26 r19.29a DPsMetXxX/˙yX/˙aXx=a˙xpstoMetDy=0x=y
55 54 29 r19.29a DPsMetXxX/˙yX/˙xpstoMetDy=0x=y
56 simp-6l DPsMetXaXx=a˙bXy=b˙cXz=c˙DPsMetX
57 simplr DPsMetXaXx=a˙bXy=b˙cXz=c˙cX
58 simp-6r DPsMetXaXx=a˙bXy=b˙cXz=c˙aX
59 simp-4r DPsMetXaXx=a˙bXy=b˙cXz=c˙bX
60 psmettri2 DPsMetXcXaXbXaDbcDa+𝑒cDb
61 56 57 58 59 60 syl13anc DPsMetXaXx=a˙bXy=b˙cXz=c˙aDbcDa+𝑒cDb
62 simp-5r DPsMetXaXx=a˙bXy=b˙cXz=c˙x=a˙
63 simpllr DPsMetXaXx=a˙bXy=b˙cXz=c˙y=b˙
64 62 63 oveq12d DPsMetXaXx=a˙bXy=b˙cXz=c˙xpstoMetDy=a˙pstoMetDb˙
65 56 58 59 17 syl3anc DPsMetXaXx=a˙bXy=b˙cXz=c˙a˙pstoMetDb˙=aDb
66 64 65 eqtrd DPsMetXaXx=a˙bXy=b˙cXz=c˙xpstoMetDy=aDb
67 simpr DPsMetXaXx=a˙bXy=b˙cXz=c˙z=c˙
68 67 62 oveq12d DPsMetXaXx=a˙bXy=b˙cXz=c˙zpstoMetDx=c˙pstoMetDa˙
69 1 pstmfval DPsMetXcXaXc˙pstoMetDa˙=cDa
70 56 57 58 69 syl3anc DPsMetXaXx=a˙bXy=b˙cXz=c˙c˙pstoMetDa˙=cDa
71 68 70 eqtrd DPsMetXaXx=a˙bXy=b˙cXz=c˙zpstoMetDx=cDa
72 67 63 oveq12d DPsMetXaXx=a˙bXy=b˙cXz=c˙zpstoMetDy=c˙pstoMetDb˙
73 1 pstmfval DPsMetXcXbXc˙pstoMetDb˙=cDb
74 56 57 59 73 syl3anc DPsMetXaXx=a˙bXy=b˙cXz=c˙c˙pstoMetDb˙=cDb
75 72 74 eqtrd DPsMetXaXx=a˙bXy=b˙cXz=c˙zpstoMetDy=cDb
76 71 75 oveq12d DPsMetXaXx=a˙bXy=b˙cXz=c˙zpstoMetDx+𝑒zpstoMetDy=cDa+𝑒cDb
77 61 66 76 3brtr4d DPsMetXaXx=a˙bXy=b˙cXz=c˙xpstoMetDyzpstoMetDx+𝑒zpstoMetDy
78 77 adantl6r DPsMetXzX/˙aXx=a˙bXy=b˙cXz=c˙xpstoMetDyzpstoMetDx+𝑒zpstoMetDy
79 elqsi zX/˙cXz=c˙
80 79 ad5antlr DPsMetXzX/˙aXx=a˙bXy=b˙cXz=c˙
81 78 80 r19.29a DPsMetXzX/˙aXx=a˙bXy=b˙xpstoMetDyzpstoMetDx+𝑒zpstoMetDy
82 81 adantl5r DPsMetXyX/˙zX/˙aXx=a˙bXy=b˙xpstoMetDyzpstoMetDx+𝑒zpstoMetDy
83 24 ad4antlr DPsMetXyX/˙zX/˙aXx=a˙bXy=b˙
84 82 83 r19.29a DPsMetXyX/˙zX/˙aXx=a˙xpstoMetDyzpstoMetDx+𝑒zpstoMetDy
85 84 adantl4r DPsMetXxX/˙yX/˙zX/˙aXx=a˙xpstoMetDyzpstoMetDx+𝑒zpstoMetDy
86 28 ad3antlr DPsMetXxX/˙yX/˙zX/˙aXx=a˙
87 85 86 r19.29a DPsMetXxX/˙yX/˙zX/˙xpstoMetDyzpstoMetDx+𝑒zpstoMetDy
88 87 ralrimiva DPsMetXxX/˙yX/˙zX/˙xpstoMetDyzpstoMetDx+𝑒zpstoMetDy
89 88 anasss DPsMetXxX/˙yX/˙zX/˙xpstoMetDyzpstoMetDx+𝑒zpstoMetDy
90 55 89 jca DPsMetXxX/˙yX/˙xpstoMetDy=0x=yzX/˙xpstoMetDyzpstoMetDx+𝑒zpstoMetDy
91 90 ralrimivva DPsMetXxX/˙yX/˙xpstoMetDy=0x=yzX/˙xpstoMetDyzpstoMetDx+𝑒zpstoMetDy
92 elfvex DPsMetXXV
93 qsexg XVX/˙V
94 isxmet X/˙VpstoMetD∞MetX/˙pstoMetD:X/˙×X/˙*xX/˙yX/˙xpstoMetDy=0x=yzX/˙xpstoMetDyzpstoMetDx+𝑒zpstoMetDy
95 92 93 94 3syl DPsMetXpstoMetD∞MetX/˙pstoMetD:X/˙×X/˙*xX/˙yX/˙xpstoMetDy=0x=yzX/˙xpstoMetDyzpstoMetDx+𝑒zpstoMetDy
96 33 91 95 mpbir2and DPsMetXpstoMetD∞MetX/˙