Step |
Hyp |
Ref |
Expression |
1 |
|
pconntop |
|
2 |
1
|
ssriv |
|
3 |
|
fss |
|
4 |
2 3
|
mpan2 |
|
5 |
|
pttop |
|
6 |
4 5
|
sylan2 |
|
7 |
|
fvi |
|
8 |
7
|
ad2antrr |
|
9 |
8
|
eleq2d |
|
10 |
9
|
biimpa |
|
11 |
|
simplr |
|
12 |
11
|
ffvelrnda |
|
13 |
|
simprl |
|
14 |
|
eqid |
|
15 |
14
|
ptuni |
|
16 |
4 15
|
sylan2 |
|
17 |
16
|
adantr |
|
18 |
13 17
|
eleqtrrd |
|
19 |
|
vex |
|
20 |
19
|
elixp |
|
21 |
18 20
|
sylib |
|
22 |
21
|
simprd |
|
23 |
22
|
r19.21bi |
|
24 |
|
simprr |
|
25 |
24 17
|
eleqtrrd |
|
26 |
|
vex |
|
27 |
26
|
elixp |
|
28 |
25 27
|
sylib |
|
29 |
28
|
simprd |
|
30 |
29
|
r19.21bi |
|
31 |
|
eqid |
|
32 |
31
|
pconncn |
|
33 |
12 23 30 32
|
syl3anc |
|
34 |
|
df-rex |
|
35 |
33 34
|
sylib |
|
36 |
10 35
|
syldan |
|
37 |
36
|
ralrimiva |
|
38 |
|
fvex |
|
39 |
|
eleq1 |
|
40 |
|
fveq1 |
|
41 |
40
|
eqeq1d |
|
42 |
|
fveq1 |
|
43 |
42
|
eqeq1d |
|
44 |
41 43
|
anbi12d |
|
45 |
39 44
|
anbi12d |
|
46 |
38 45
|
ac6s2 |
|
47 |
37 46
|
syl |
|
48 |
|
iitopon |
|
49 |
48
|
a1i |
|
50 |
|
simplll |
|
51 |
11
|
adantr |
|
52 |
51 4
|
syl |
|
53 |
8
|
adantr |
|
54 |
53
|
eleq2d |
|
55 |
54
|
biimpar |
|
56 |
|
simprr |
|
57 |
|
fveq2 |
|
58 |
|
fveq2 |
|
59 |
58
|
oveq2d |
|
60 |
57 59
|
eleq12d |
|
61 |
57
|
fveq1d |
|
62 |
|
fveq2 |
|
63 |
61 62
|
eqeq12d |
|
64 |
57
|
fveq1d |
|
65 |
|
fveq2 |
|
66 |
64 65
|
eqeq12d |
|
67 |
63 66
|
anbi12d |
|
68 |
60 67
|
anbi12d |
|
69 |
68
|
rspccva |
|
70 |
56 69
|
sylan |
|
71 |
55 70
|
syldan |
|
72 |
71
|
simpld |
|
73 |
|
iiuni |
|
74 |
|
eqid |
|
75 |
73 74
|
cnf |
|
76 |
72 75
|
syl |
|
77 |
76
|
feqmptd |
|
78 |
77 72
|
eqeltrrd |
|
79 |
14 49 50 52 78
|
ptcn |
|
80 |
71
|
simprd |
|
81 |
80
|
simpld |
|
82 |
81
|
mpteq2dva |
|
83 |
|
0elunit |
|
84 |
|
mptexg |
|
85 |
50 84
|
syl |
|
86 |
|
fveq2 |
|
87 |
86
|
mpteq2dv |
|
88 |
|
eqid |
|
89 |
87 88
|
fvmptg |
|
90 |
83 85 89
|
sylancr |
|
91 |
21
|
simpld |
|
92 |
91
|
adantr |
|
93 |
|
dffn5 |
|
94 |
92 93
|
sylib |
|
95 |
82 90 94
|
3eqtr4d |
|
96 |
80
|
simprd |
|
97 |
96
|
mpteq2dva |
|
98 |
|
1elunit |
|
99 |
|
mptexg |
|
100 |
50 99
|
syl |
|
101 |
|
fveq2 |
|
102 |
101
|
mpteq2dv |
|
103 |
102 88
|
fvmptg |
|
104 |
98 100 103
|
sylancr |
|
105 |
28
|
simpld |
|
106 |
105
|
adantr |
|
107 |
|
dffn5 |
|
108 |
106 107
|
sylib |
|
109 |
97 104 108
|
3eqtr4d |
|
110 |
|
fveq1 |
|
111 |
110
|
eqeq1d |
|
112 |
|
fveq1 |
|
113 |
112
|
eqeq1d |
|
114 |
111 113
|
anbi12d |
|
115 |
114
|
rspcev |
|
116 |
79 95 109 115
|
syl12anc |
|
117 |
47 116
|
exlimddv |
|
118 |
117
|
ralrimivva |
|
119 |
|
eqid |
|
120 |
119
|
ispconn |
|
121 |
6 118 120
|
sylanbrc |
|