Metamath Proof Explorer


Theorem ptpconn

Description: The topological product of a collection of path-connected spaces is path-connected. The proof uses the axiom of choice. (Contributed by Mario Carneiro, 17-Feb-2015)

Ref Expression
Assertion ptpconn A V F : A PConn 𝑡 F PConn

Proof

Step Hyp Ref Expression
1 pconntop x PConn x Top
2 1 ssriv PConn Top
3 fss F : A PConn PConn Top F : A Top
4 2 3 mpan2 F : A PConn F : A Top
5 pttop A V F : A Top 𝑡 F Top
6 4 5 sylan2 A V F : A PConn 𝑡 F Top
7 fvi A V I A = A
8 7 ad2antrr A V F : A PConn x 𝑡 F y 𝑡 F I A = A
9 8 eleq2d A V F : A PConn x 𝑡 F y 𝑡 F t I A t A
10 9 biimpa A V F : A PConn x 𝑡 F y 𝑡 F t I A t A
11 simplr A V F : A PConn x 𝑡 F y 𝑡 F F : A PConn
12 11 ffvelrnda A V F : A PConn x 𝑡 F y 𝑡 F t A F t PConn
13 simprl A V F : A PConn x 𝑡 F y 𝑡 F x 𝑡 F
14 eqid 𝑡 F = 𝑡 F
15 14 ptuni A V F : A Top t A F t = 𝑡 F
16 4 15 sylan2 A V F : A PConn t A F t = 𝑡 F
17 16 adantr A V F : A PConn x 𝑡 F y 𝑡 F t A F t = 𝑡 F
18 13 17 eleqtrrd A V F : A PConn x 𝑡 F y 𝑡 F x t A F t
19 vex x V
20 19 elixp x t A F t x Fn A t A x t F t
21 18 20 sylib A V F : A PConn x 𝑡 F y 𝑡 F x Fn A t A x t F t
22 21 simprd A V F : A PConn x 𝑡 F y 𝑡 F t A x t F t
23 22 r19.21bi A V F : A PConn x 𝑡 F y 𝑡 F t A x t F t
24 simprr A V F : A PConn x 𝑡 F y 𝑡 F y 𝑡 F
25 24 17 eleqtrrd A V F : A PConn x 𝑡 F y 𝑡 F y t A F t
26 vex y V
27 26 elixp y t A F t y Fn A t A y t F t
28 25 27 sylib A V F : A PConn x 𝑡 F y 𝑡 F y Fn A t A y t F t
29 28 simprd A V F : A PConn x 𝑡 F y 𝑡 F t A y t F t
30 29 r19.21bi A V F : A PConn x 𝑡 F y 𝑡 F t A y t F t
31 eqid F t = F t
32 31 pconncn F t PConn x t F t y t F t f II Cn F t f 0 = x t f 1 = y t
33 12 23 30 32 syl3anc A V F : A PConn x 𝑡 F y 𝑡 F t A f II Cn F t f 0 = x t f 1 = y t
34 df-rex f II Cn F t f 0 = x t f 1 = y t f f II Cn F t f 0 = x t f 1 = y t
35 33 34 sylib A V F : A PConn x 𝑡 F y 𝑡 F t A f f II Cn F t f 0 = x t f 1 = y t
36 10 35 syldan A V F : A PConn x 𝑡 F y 𝑡 F t I A f f II Cn F t f 0 = x t f 1 = y t
37 36 ralrimiva A V F : A PConn x 𝑡 F y 𝑡 F t I A f f II Cn F t f 0 = x t f 1 = y t
38 fvex I A V
39 eleq1 f = g t f II Cn F t g t II Cn F t
40 fveq1 f = g t f 0 = g t 0
41 40 eqeq1d f = g t f 0 = x t g t 0 = x t
42 fveq1 f = g t f 1 = g t 1
43 42 eqeq1d f = g t f 1 = y t g t 1 = y t
44 41 43 anbi12d f = g t f 0 = x t f 1 = y t g t 0 = x t g t 1 = y t
45 39 44 anbi12d f = g t f II Cn F t f 0 = x t f 1 = y t g t II Cn F t g t 0 = x t g t 1 = y t
46 38 45 ac6s2 t I A f f II Cn F t f 0 = x t f 1 = y t g g Fn I A t I A g t II Cn F t g t 0 = x t g t 1 = y t
47 37 46 syl A V F : A PConn x 𝑡 F y 𝑡 F g g Fn I A t I A g t II Cn F t g t 0 = x t g t 1 = y t
48 iitopon II TopOn 0 1
49 48 a1i A V F : A PConn x 𝑡 F y 𝑡 F g Fn I A t I A g t II Cn F t g t 0 = x t g t 1 = y t II TopOn 0 1
50 simplll A V F : A PConn x 𝑡 F y 𝑡 F g Fn I A t I A g t II Cn F t g t 0 = x t g t 1 = y t A V
51 11 adantr A V F : A PConn x 𝑡 F y 𝑡 F g Fn I A t I A g t II Cn F t g t 0 = x t g t 1 = y t F : A PConn
52 51 4 syl A V F : A PConn x 𝑡 F y 𝑡 F g Fn I A t I A g t II Cn F t g t 0 = x t g t 1 = y t F : A Top
53 8 adantr A V F : A PConn x 𝑡 F y 𝑡 F g Fn I A t I A g t II Cn F t g t 0 = x t g t 1 = y t I A = A
54 53 eleq2d A V F : A PConn x 𝑡 F y 𝑡 F g Fn I A t I A g t II Cn F t g t 0 = x t g t 1 = y t i I A i A
55 54 biimpar A V F : A PConn x 𝑡 F y 𝑡 F g Fn I A t I A g t II Cn F t g t 0 = x t g t 1 = y t i A i I A
56 simprr A V F : A PConn x 𝑡 F y 𝑡 F g Fn I A t I A g t II Cn F t g t 0 = x t g t 1 = y t t I A g t II Cn F t g t 0 = x t g t 1 = y t
57 fveq2 t = i g t = g i
58 fveq2 t = i F t = F i
59 58 oveq2d t = i II Cn F t = II Cn F i
60 57 59 eleq12d t = i g t II Cn F t g i II Cn F i
61 57 fveq1d t = i g t 0 = g i 0
62 fveq2 t = i x t = x i
63 61 62 eqeq12d t = i g t 0 = x t g i 0 = x i
64 57 fveq1d t = i g t 1 = g i 1
65 fveq2 t = i y t = y i
66 64 65 eqeq12d t = i g t 1 = y t g i 1 = y i
67 63 66 anbi12d t = i g t 0 = x t g t 1 = y t g i 0 = x i g i 1 = y i
68 60 67 anbi12d t = i g t II Cn F t g t 0 = x t g t 1 = y t g i II Cn F i g i 0 = x i g i 1 = y i
69 68 rspccva t I A g t II Cn F t g t 0 = x t g t 1 = y t i I A g i II Cn F i g i 0 = x i g i 1 = y i
70 56 69 sylan A V F : A PConn x 𝑡 F y 𝑡 F g Fn I A t I A g t II Cn F t g t 0 = x t g t 1 = y t i I A g i II Cn F i g i 0 = x i g i 1 = y i
71 55 70 syldan A V F : A PConn x 𝑡 F y 𝑡 F g Fn I A t I A g t II Cn F t g t 0 = x t g t 1 = y t i A g i II Cn F i g i 0 = x i g i 1 = y i
72 71 simpld A V F : A PConn x 𝑡 F y 𝑡 F g Fn I A t I A g t II Cn F t g t 0 = x t g t 1 = y t i A g i II Cn F i
73 iiuni 0 1 = II
74 eqid F i = F i
75 73 74 cnf g i II Cn F i g i : 0 1 F i
76 72 75 syl A V F : A PConn x 𝑡 F y 𝑡 F g Fn I A t I A g t II Cn F t g t 0 = x t g t 1 = y t i A g i : 0 1 F i
77 76 feqmptd A V F : A PConn x 𝑡 F y 𝑡 F g Fn I A t I A g t II Cn F t g t 0 = x t g t 1 = y t i A g i = z 0 1 g i z
78 77 72 eqeltrrd A V F : A PConn x 𝑡 F y 𝑡 F g Fn I A t I A g t II Cn F t g t 0 = x t g t 1 = y t i A z 0 1 g i z II Cn F i
79 14 49 50 52 78 ptcn A V F : A PConn x 𝑡 F y 𝑡 F g Fn I A t I A g t II Cn F t g t 0 = x t g t 1 = y t z 0 1 i A g i z II Cn 𝑡 F
80 71 simprd A V F : A PConn x 𝑡 F y 𝑡 F g Fn I A t I A g t II Cn F t g t 0 = x t g t 1 = y t i A g i 0 = x i g i 1 = y i
81 80 simpld A V F : A PConn x 𝑡 F y 𝑡 F g Fn I A t I A g t II Cn F t g t 0 = x t g t 1 = y t i A g i 0 = x i
82 81 mpteq2dva A V F : A PConn x 𝑡 F y 𝑡 F g Fn I A t I A g t II Cn F t g t 0 = x t g t 1 = y t i A g i 0 = i A x i
83 0elunit 0 0 1
84 mptexg A V i A g i 0 V
85 50 84 syl A V F : A PConn x 𝑡 F y 𝑡 F g Fn I A t I A g t II Cn F t g t 0 = x t g t 1 = y t i A g i 0 V
86 fveq2 z = 0 g i z = g i 0
87 86 mpteq2dv z = 0 i A g i z = i A g i 0
88 eqid z 0 1 i A g i z = z 0 1 i A g i z
89 87 88 fvmptg 0 0 1 i A g i 0 V z 0 1 i A g i z 0 = i A g i 0
90 83 85 89 sylancr A V F : A PConn x 𝑡 F y 𝑡 F g Fn I A t I A g t II Cn F t g t 0 = x t g t 1 = y t z 0 1 i A g i z 0 = i A g i 0
91 21 simpld A V F : A PConn x 𝑡 F y 𝑡 F x Fn A
92 91 adantr A V F : A PConn x 𝑡 F y 𝑡 F g Fn I A t I A g t II Cn F t g t 0 = x t g t 1 = y t x Fn A
93 dffn5 x Fn A x = i A x i
94 92 93 sylib A V F : A PConn x 𝑡 F y 𝑡 F g Fn I A t I A g t II Cn F t g t 0 = x t g t 1 = y t x = i A x i
95 82 90 94 3eqtr4d A V F : A PConn x 𝑡 F y 𝑡 F g Fn I A t I A g t II Cn F t g t 0 = x t g t 1 = y t z 0 1 i A g i z 0 = x
96 80 simprd A V F : A PConn x 𝑡 F y 𝑡 F g Fn I A t I A g t II Cn F t g t 0 = x t g t 1 = y t i A g i 1 = y i
97 96 mpteq2dva A V F : A PConn x 𝑡 F y 𝑡 F g Fn I A t I A g t II Cn F t g t 0 = x t g t 1 = y t i A g i 1 = i A y i
98 1elunit 1 0 1
99 mptexg A V i A g i 1 V
100 50 99 syl A V F : A PConn x 𝑡 F y 𝑡 F g Fn I A t I A g t II Cn F t g t 0 = x t g t 1 = y t i A g i 1 V
101 fveq2 z = 1 g i z = g i 1
102 101 mpteq2dv z = 1 i A g i z = i A g i 1
103 102 88 fvmptg 1 0 1 i A g i 1 V z 0 1 i A g i z 1 = i A g i 1
104 98 100 103 sylancr A V F : A PConn x 𝑡 F y 𝑡 F g Fn I A t I A g t II Cn F t g t 0 = x t g t 1 = y t z 0 1 i A g i z 1 = i A g i 1
105 28 simpld A V F : A PConn x 𝑡 F y 𝑡 F y Fn A
106 105 adantr A V F : A PConn x 𝑡 F y 𝑡 F g Fn I A t I A g t II Cn F t g t 0 = x t g t 1 = y t y Fn A
107 dffn5 y Fn A y = i A y i
108 106 107 sylib A V F : A PConn x 𝑡 F y 𝑡 F g Fn I A t I A g t II Cn F t g t 0 = x t g t 1 = y t y = i A y i
109 97 104 108 3eqtr4d A V F : A PConn x 𝑡 F y 𝑡 F g Fn I A t I A g t II Cn F t g t 0 = x t g t 1 = y t z 0 1 i A g i z 1 = y
110 fveq1 f = z 0 1 i A g i z f 0 = z 0 1 i A g i z 0
111 110 eqeq1d f = z 0 1 i A g i z f 0 = x z 0 1 i A g i z 0 = x
112 fveq1 f = z 0 1 i A g i z f 1 = z 0 1 i A g i z 1
113 112 eqeq1d f = z 0 1 i A g i z f 1 = y z 0 1 i A g i z 1 = y
114 111 113 anbi12d f = z 0 1 i A g i z f 0 = x f 1 = y z 0 1 i A g i z 0 = x z 0 1 i A g i z 1 = y
115 114 rspcev z 0 1 i A g i z II Cn 𝑡 F z 0 1 i A g i z 0 = x z 0 1 i A g i z 1 = y f II Cn 𝑡 F f 0 = x f 1 = y
116 79 95 109 115 syl12anc A V F : A PConn x 𝑡 F y 𝑡 F g Fn I A t I A g t II Cn F t g t 0 = x t g t 1 = y t f II Cn 𝑡 F f 0 = x f 1 = y
117 47 116 exlimddv A V F : A PConn x 𝑡 F y 𝑡 F f II Cn 𝑡 F f 0 = x f 1 = y
118 117 ralrimivva A V F : A PConn x 𝑡 F y 𝑡 F f II Cn 𝑡 F f 0 = x f 1 = y
119 eqid 𝑡 F = 𝑡 F
120 119 ispconn 𝑡 F PConn 𝑡 F Top x 𝑡 F y 𝑡 F f II Cn 𝑡 F f 0 = x f 1 = y
121 6 118 120 sylanbrc A V F : A PConn 𝑡 F PConn