| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pconntop |
|
| 2 |
1
|
ssriv |
|
| 3 |
|
fss |
|
| 4 |
2 3
|
mpan2 |
|
| 5 |
|
pttop |
|
| 6 |
4 5
|
sylan2 |
|
| 7 |
|
fvi |
|
| 8 |
7
|
ad2antrr |
|
| 9 |
8
|
eleq2d |
|
| 10 |
9
|
biimpa |
|
| 11 |
|
simplr |
|
| 12 |
11
|
ffvelcdmda |
|
| 13 |
|
simprl |
|
| 14 |
|
eqid |
|
| 15 |
14
|
ptuni |
|
| 16 |
4 15
|
sylan2 |
|
| 17 |
16
|
adantr |
|
| 18 |
13 17
|
eleqtrrd |
|
| 19 |
|
vex |
|
| 20 |
19
|
elixp |
|
| 21 |
18 20
|
sylib |
|
| 22 |
21
|
simprd |
|
| 23 |
22
|
r19.21bi |
|
| 24 |
|
simprr |
|
| 25 |
24 17
|
eleqtrrd |
|
| 26 |
|
vex |
|
| 27 |
26
|
elixp |
|
| 28 |
25 27
|
sylib |
|
| 29 |
28
|
simprd |
|
| 30 |
29
|
r19.21bi |
|
| 31 |
|
eqid |
|
| 32 |
31
|
pconncn |
|
| 33 |
12 23 30 32
|
syl3anc |
|
| 34 |
|
df-rex |
|
| 35 |
33 34
|
sylib |
|
| 36 |
10 35
|
syldan |
|
| 37 |
36
|
ralrimiva |
|
| 38 |
|
fvex |
|
| 39 |
|
eleq1 |
|
| 40 |
|
fveq1 |
|
| 41 |
40
|
eqeq1d |
|
| 42 |
|
fveq1 |
|
| 43 |
42
|
eqeq1d |
|
| 44 |
41 43
|
anbi12d |
|
| 45 |
39 44
|
anbi12d |
|
| 46 |
38 45
|
ac6s2 |
|
| 47 |
37 46
|
syl |
|
| 48 |
|
iitopon |
|
| 49 |
48
|
a1i |
|
| 50 |
|
simplll |
|
| 51 |
11
|
adantr |
|
| 52 |
51 4
|
syl |
|
| 53 |
8
|
adantr |
|
| 54 |
53
|
eleq2d |
|
| 55 |
54
|
biimpar |
|
| 56 |
|
simprr |
|
| 57 |
|
fveq2 |
|
| 58 |
|
fveq2 |
|
| 59 |
58
|
oveq2d |
|
| 60 |
57 59
|
eleq12d |
|
| 61 |
57
|
fveq1d |
|
| 62 |
|
fveq2 |
|
| 63 |
61 62
|
eqeq12d |
|
| 64 |
57
|
fveq1d |
|
| 65 |
|
fveq2 |
|
| 66 |
64 65
|
eqeq12d |
|
| 67 |
63 66
|
anbi12d |
|
| 68 |
60 67
|
anbi12d |
|
| 69 |
68
|
rspccva |
|
| 70 |
56 69
|
sylan |
|
| 71 |
55 70
|
syldan |
|
| 72 |
71
|
simpld |
|
| 73 |
|
iiuni |
|
| 74 |
|
eqid |
|
| 75 |
73 74
|
cnf |
|
| 76 |
72 75
|
syl |
|
| 77 |
76
|
feqmptd |
|
| 78 |
77 72
|
eqeltrrd |
|
| 79 |
14 49 50 52 78
|
ptcn |
|
| 80 |
71
|
simprd |
|
| 81 |
80
|
simpld |
|
| 82 |
81
|
mpteq2dva |
|
| 83 |
|
0elunit |
|
| 84 |
|
mptexg |
|
| 85 |
50 84
|
syl |
|
| 86 |
|
fveq2 |
|
| 87 |
86
|
mpteq2dv |
|
| 88 |
|
eqid |
|
| 89 |
87 88
|
fvmptg |
|
| 90 |
83 85 89
|
sylancr |
|
| 91 |
21
|
simpld |
|
| 92 |
91
|
adantr |
|
| 93 |
|
dffn5 |
|
| 94 |
92 93
|
sylib |
|
| 95 |
82 90 94
|
3eqtr4d |
|
| 96 |
80
|
simprd |
|
| 97 |
96
|
mpteq2dva |
|
| 98 |
|
1elunit |
|
| 99 |
|
mptexg |
|
| 100 |
50 99
|
syl |
|
| 101 |
|
fveq2 |
|
| 102 |
101
|
mpteq2dv |
|
| 103 |
102 88
|
fvmptg |
|
| 104 |
98 100 103
|
sylancr |
|
| 105 |
28
|
simpld |
|
| 106 |
105
|
adantr |
|
| 107 |
|
dffn5 |
|
| 108 |
106 107
|
sylib |
|
| 109 |
97 104 108
|
3eqtr4d |
|
| 110 |
|
fveq1 |
|
| 111 |
110
|
eqeq1d |
|
| 112 |
|
fveq1 |
|
| 113 |
112
|
eqeq1d |
|
| 114 |
111 113
|
anbi12d |
|
| 115 |
114
|
rspcev |
|
| 116 |
79 95 109 115
|
syl12anc |
|
| 117 |
47 116
|
exlimddv |
|
| 118 |
117
|
ralrimivva |
|
| 119 |
|
eqid |
|
| 120 |
119
|
ispconn |
|
| 121 |
6 118 120
|
sylanbrc |
|