| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reheibor.2 |
|
| 2 |
|
reheibor.3 |
|
| 3 |
|
reheibor.4 |
|
| 4 |
|
df1o2 |
|
| 5 |
|
snfi |
|
| 6 |
4 5
|
eqeltri |
|
| 7 |
|
imassrn |
|
| 8 |
|
0ex |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
9 10
|
ismrer1 |
|
| 12 |
8 11
|
ax-mp |
|
| 13 |
4
|
fveq2i |
|
| 14 |
13
|
oveq2i |
|
| 15 |
12 14
|
eleqtrri |
|
| 16 |
9
|
rexmet |
|
| 17 |
|
eqid |
|
| 18 |
17
|
rrnmet |
|
| 19 |
|
metxmet |
|
| 20 |
6 18 19
|
mp2b |
|
| 21 |
|
isismty |
|
| 22 |
16 20 21
|
mp2an |
|
| 23 |
15 22
|
mpbi |
|
| 24 |
23
|
simpli |
|
| 25 |
|
f1of |
|
| 26 |
|
frn |
|
| 27 |
24 25 26
|
mp2b |
|
| 28 |
7 27
|
sstri |
|
| 29 |
28
|
a1i |
|
| 30 |
|
eqid |
|
| 31 |
|
eqid |
|
| 32 |
|
eqid |
|
| 33 |
17 30 31 32
|
rrnheibor |
|
| 34 |
6 29 33
|
sylancr |
|
| 35 |
|
cnxmet |
|
| 36 |
|
id |
|
| 37 |
|
ax-resscn |
|
| 38 |
36 37
|
sstrdi |
|
| 39 |
|
xmetres2 |
|
| 40 |
35 38 39
|
sylancr |
|
| 41 |
1 40
|
eqeltrid |
|
| 42 |
|
xmetres2 |
|
| 43 |
20 29 42
|
sylancr |
|
| 44 |
2 31
|
ismtyhmeo |
|
| 45 |
41 43 44
|
syl2anc |
|
| 46 |
16
|
a1i |
|
| 47 |
20
|
a1i |
|
| 48 |
15
|
a1i |
|
| 49 |
|
eqid |
|
| 50 |
|
eqid |
|
| 51 |
49 50 30
|
ismtyres |
|
| 52 |
46 47 48 36 51
|
syl22anc |
|
| 53 |
|
xpss12 |
|
| 54 |
53
|
anidms |
|
| 55 |
54
|
resabs1d |
|
| 56 |
55 1
|
eqtr4di |
|
| 57 |
56
|
oveq1d |
|
| 58 |
52 57
|
eleqtrd |
|
| 59 |
45 58
|
sseldd |
|
| 60 |
|
hmphi |
|
| 61 |
59 60
|
syl |
|
| 62 |
|
cmphmph |
|
| 63 |
|
hmphsym |
|
| 64 |
|
cmphmph |
|
| 65 |
63 64
|
syl |
|
| 66 |
62 65
|
impbid |
|
| 67 |
61 66
|
syl |
|
| 68 |
|
eqid |
|
| 69 |
9 68
|
tgioo |
|
| 70 |
3 69
|
eqtri |
|
| 71 |
70 32
|
ismtyhmeo |
|
| 72 |
16 20 71
|
mp2an |
|
| 73 |
72 15
|
sselii |
|
| 74 |
|
retopon |
|
| 75 |
3 74
|
eqeltri |
|
| 76 |
75
|
toponunii |
|
| 77 |
76
|
hmeocld |
|
| 78 |
73 36 77
|
sylancr |
|
| 79 |
|
ismtybnd |
|
| 80 |
41 43 58 79
|
syl3anc |
|
| 81 |
78 80
|
anbi12d |
|
| 82 |
34 67 81
|
3bitr4d |
|