Metamath Proof Explorer


Theorem reheibor

Description: Heine-Borel theorem for real numbers. A subset of RR is compact iff it is closed and bounded. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 22-Sep-2015)

Ref Expression
Hypotheses reheibor.2 M=absY×Y
reheibor.3 T=MetOpenM
reheibor.4 U=topGenran.
Assertion reheibor YTCompYClsdUMBndY

Proof

Step Hyp Ref Expression
1 reheibor.2 M=absY×Y
2 reheibor.3 T=MetOpenM
3 reheibor.4 U=topGenran.
4 df1o2 1𝑜=
5 snfi Fin
6 4 5 eqeltri 1𝑜Fin
7 imassrn x×xYranx×x
8 0ex V
9 eqid abs2=abs2
10 eqid x×x=x×x
11 9 10 ismrer1 Vx×xabs2Ismtyn
12 8 11 ax-mp x×xabs2Ismtyn
13 4 fveq2i n1𝑜=n
14 13 oveq2i abs2Ismtyn1𝑜=abs2Ismtyn
15 12 14 eleqtrri x×xabs2Ismtyn1𝑜
16 9 rexmet abs2∞Met
17 eqid 1𝑜=1𝑜
18 17 rrnmet 1𝑜Finn1𝑜Met1𝑜
19 metxmet n1𝑜Met1𝑜n1𝑜∞Met1𝑜
20 6 18 19 mp2b n1𝑜∞Met1𝑜
21 isismty abs2∞Metn1𝑜∞Met1𝑜x×xabs2Ismtyn1𝑜x×x:1-1 onto1𝑜yzyabs2z=x×xyn1𝑜x×xz
22 16 20 21 mp2an x×xabs2Ismtyn1𝑜x×x:1-1 onto1𝑜yzyabs2z=x×xyn1𝑜x×xz
23 15 22 mpbi x×x:1-1 onto1𝑜yzyabs2z=x×xyn1𝑜x×xz
24 23 simpli x×x:1-1 onto1𝑜
25 f1of x×x:1-1 onto1𝑜x×x:1𝑜
26 frn x×x:1𝑜ranx×x1𝑜
27 24 25 26 mp2b ranx×x1𝑜
28 7 27 sstri x×xY1𝑜
29 28 a1i Yx×xY1𝑜
30 eqid n1𝑜x×xY×x×xY=n1𝑜x×xY×x×xY
31 eqid MetOpenn1𝑜x×xY×x×xY=MetOpenn1𝑜x×xY×x×xY
32 eqid MetOpenn1𝑜=MetOpenn1𝑜
33 17 30 31 32 rrnheibor 1𝑜Finx×xY1𝑜MetOpenn1𝑜x×xY×x×xYCompx×xYClsdMetOpenn1𝑜n1𝑜x×xY×x×xYBndx×xY
34 6 29 33 sylancr YMetOpenn1𝑜x×xY×x×xYCompx×xYClsdMetOpenn1𝑜n1𝑜x×xY×x×xYBndx×xY
35 cnxmet abs∞Met
36 id YY
37 ax-resscn
38 36 37 sstrdi YY
39 xmetres2 abs∞MetYabsY×Y∞MetY
40 35 38 39 sylancr YabsY×Y∞MetY
41 1 40 eqeltrid YM∞MetY
42 xmetres2 n1𝑜∞Met1𝑜x×xY1𝑜n1𝑜x×xY×x×xY∞Metx×xY
43 20 29 42 sylancr Yn1𝑜x×xY×x×xY∞Metx×xY
44 2 31 ismtyhmeo M∞MetYn1𝑜x×xY×x×xY∞Metx×xYMIsmtyn1𝑜x×xY×x×xYTHomeoMetOpenn1𝑜x×xY×x×xY
45 41 43 44 syl2anc YMIsmtyn1𝑜x×xY×x×xYTHomeoMetOpenn1𝑜x×xY×x×xY
46 16 a1i Yabs2∞Met
47 20 a1i Yn1𝑜∞Met1𝑜
48 15 a1i Yx×xabs2Ismtyn1𝑜
49 eqid x×xY=x×xY
50 eqid abs2Y×Y=abs2Y×Y
51 49 50 30 ismtyres abs2∞Metn1𝑜∞Met1𝑜x×xabs2Ismtyn1𝑜Yx×xYabs2Y×YIsmtyn1𝑜x×xY×x×xY
52 46 47 48 36 51 syl22anc Yx×xYabs2Y×YIsmtyn1𝑜x×xY×x×xY
53 xpss12 YYY×Y2
54 53 anidms YY×Y2
55 54 resabs1d Yabs2Y×Y=absY×Y
56 55 1 eqtr4di Yabs2Y×Y=M
57 56 oveq1d Yabs2Y×YIsmtyn1𝑜x×xY×x×xY=MIsmtyn1𝑜x×xY×x×xY
58 52 57 eleqtrd Yx×xYMIsmtyn1𝑜x×xY×x×xY
59 45 58 sseldd Yx×xYTHomeoMetOpenn1𝑜x×xY×x×xY
60 hmphi x×xYTHomeoMetOpenn1𝑜x×xY×x×xYTMetOpenn1𝑜x×xY×x×xY
61 59 60 syl YTMetOpenn1𝑜x×xY×x×xY
62 cmphmph TMetOpenn1𝑜x×xY×x×xYTCompMetOpenn1𝑜x×xY×x×xYComp
63 hmphsym TMetOpenn1𝑜x×xY×x×xYMetOpenn1𝑜x×xY×x×xYT
64 cmphmph MetOpenn1𝑜x×xY×x×xYTMetOpenn1𝑜x×xY×x×xYCompTComp
65 63 64 syl TMetOpenn1𝑜x×xY×x×xYMetOpenn1𝑜x×xY×x×xYCompTComp
66 62 65 impbid TMetOpenn1𝑜x×xY×x×xYTCompMetOpenn1𝑜x×xY×x×xYComp
67 61 66 syl YTCompMetOpenn1𝑜x×xY×x×xYComp
68 eqid MetOpenabs2=MetOpenabs2
69 9 68 tgioo topGenran.=MetOpenabs2
70 3 69 eqtri U=MetOpenabs2
71 70 32 ismtyhmeo abs2∞Metn1𝑜∞Met1𝑜abs2Ismtyn1𝑜UHomeoMetOpenn1𝑜
72 16 20 71 mp2an abs2Ismtyn1𝑜UHomeoMetOpenn1𝑜
73 72 15 sselii x×xUHomeoMetOpenn1𝑜
74 retopon topGenran.TopOn
75 3 74 eqeltri UTopOn
76 75 toponunii =U
77 76 hmeocld x×xUHomeoMetOpenn1𝑜YYClsdUx×xYClsdMetOpenn1𝑜
78 73 36 77 sylancr YYClsdUx×xYClsdMetOpenn1𝑜
79 ismtybnd M∞MetYn1𝑜x×xY×x×xY∞Metx×xYx×xYMIsmtyn1𝑜x×xY×x×xYMBndYn1𝑜x×xY×x×xYBndx×xY
80 41 43 58 79 syl3anc YMBndYn1𝑜x×xY×x×xYBndx×xY
81 78 80 anbi12d YYClsdUMBndYx×xYClsdMetOpenn1𝑜n1𝑜x×xY×x×xYBndx×xY
82 34 67 81 3bitr4d YTCompYClsdUMBndY