Metamath Proof Explorer


Theorem requad01

Description: A condition for a quadratic equation with real coefficients to have (at least) one real solution. (Contributed by AV, 23-Jan-2023)

Ref Expression
Hypotheses requad2.a φA
requad2.z φA0
requad2.b φB
requad2.c φC
requad2.d φD=B24AC
Assertion requad01 φxAx2+Bx+C=00D

Proof

Step Hyp Ref Expression
1 requad2.a φA
2 requad2.z φA0
3 requad2.b φB
4 requad2.c φC
5 requad2.d φD=B24AC
6 1 recnd φA
7 6 adantr φxA
8 2 adantr φxA0
9 3 recnd φB
10 9 adantr φxB
11 4 recnd φC
12 11 adantr φxC
13 recn xx
14 13 adantl φxx
15 5 adantr φxD=B24AC
16 7 8 10 12 14 15 quad φxAx2+Bx+C=0x=-B+D2Ax=-B-D2A
17 eleq1 x=-B+D2Ax-B+D2A
18 17 adantl φx=-B+D2Ax-B+D2A
19 2re 2
20 19 a1i φ2
21 20 1 remulcld φ2A
22 21 adantr φ¬0D2A
23 9 negcld φB
24 3 resqcld φB2
25 4re 4
26 25 a1i φ4
27 1 4 remulcld φAC
28 26 27 remulcld φ4AC
29 24 28 resubcld φB24AC
30 5 29 eqeltrd φD
31 30 recnd φD
32 31 sqrtcld φD
33 23 32 addcld φ-B+D
34 33 adantr φ¬0D-B+D
35 3 renegcld φB
36 35 adantr φ¬0DB
37 32 adantr φ¬0DD
38 31 negnegd φD=D
39 38 adantr φ¬0DD=D
40 39 eqcomd φ¬0DD=D
41 40 fveq2d φ¬0DD=D
42 30 renegcld φD
43 42 adantr φ¬0DD
44 0red φ0
45 30 44 ltnled φD<0¬0D
46 ltle D0D<0D0
47 30 44 46 syl2anc φD<0D0
48 45 47 sylbird φ¬0DD0
49 48 imp φ¬0DD0
50 30 le0neg1d φD00D
51 50 adantr φ¬0DD00D
52 49 51 mpbid φ¬0D0D
53 43 52 sqrtnegd φ¬0DD=iD
54 41 53 eqtrd φ¬0DD=iD
55 ax-icn i
56 55 a1i φ¬0Di
57 31 negcld φD
58 57 sqrtcld φD
59 58 adantr φ¬0DD
60 56 59 mulcomd φ¬0DiD=Di
61 43 52 resqrtcld φ¬0DD
62 inelr ¬i
63 eldif ii¬i
64 55 62 63 mpbir2an i
65 64 a1i φ¬0Di
66 30 lt0neg1d φD<00<D
67 ltne 00<DD0
68 44 67 sylan φ0<DD0
69 42 adantr φ0<DD
70 ltle 0D0<D0D
71 44 42 70 syl2anc φ0<D0D
72 71 imp φ0<D0D
73 sqrt00 D0DD=0D=0
74 69 72 73 syl2anc φ0<DD=0D=0
75 74 bicomd φ0<DD=0D=0
76 75 necon3bid φ0<DD0D0
77 68 76 mpbid φ0<DD0
78 77 ex φ0<DD0
79 66 78 sylbid φD<0D0
80 45 79 sylbird φ¬0DD0
81 80 imp φ¬0DD0
82 61 65 81 recnmulnred φ¬0DDi
83 df-nel Di¬Di
84 82 83 sylib φ¬0D¬Di
85 60 84 eqneltrd φ¬0D¬iD
86 54 85 eqneltrd φ¬0D¬D
87 37 86 eldifd φ¬0DD
88 36 87 readdcnnred φ¬0D-B+D
89 df-nel -B+D¬-B+D
90 88 89 sylib φ¬0D¬-B+D
91 34 90 eldifd φ¬0D-B+D
92 2cnd φ2
93 2ne0 20
94 93 a1i φ20
95 92 6 94 2 mulne0d φ2A0
96 95 adantr φ¬0D2A0
97 22 91 96 cndivrenred φ¬0D-B+D2A
98 df-nel -B+D2A¬-B+D2A
99 97 98 sylib φ¬0D¬-B+D2A
100 99 ex φ¬0D¬-B+D2A
101 100 con4d φ-B+D2A0D
102 101 adantr φx=-B+D2A-B+D2A0D
103 18 102 sylbid φx=-B+D2Ax0D
104 103 ex φx=-B+D2Ax0D
105 eleq1 x=-B-D2Ax-B-D2A
106 105 adantl φx=-B-D2Ax-B-D2A
107 23 32 subcld φ-B-D
108 107 adantr φ¬0D-B-D
109 36 87 resubcnnred φ¬0D-B-D
110 df-nel -B-D¬-B-D
111 109 110 sylib φ¬0D¬-B-D
112 108 111 eldifd φ¬0D-B-D
113 22 112 96 cndivrenred φ¬0D-B-D2A
114 df-nel -B-D2A¬-B-D2A
115 113 114 sylib φ¬0D¬-B-D2A
116 115 ex φ¬0D¬-B-D2A
117 116 con4d φ-B-D2A0D
118 117 adantr φx=-B-D2A-B-D2A0D
119 106 118 sylbid φx=-B-D2Ax0D
120 119 ex φx=-B-D2Ax0D
121 104 120 jaod φx=-B+D2Ax=-B-D2Ax0D
122 121 com23 φxx=-B+D2Ax=-B-D2A0D
123 122 imp φxx=-B+D2Ax=-B-D2A0D
124 16 123 sylbid φxAx2+Bx+C=00D
125 124 rexlimdva φxAx2+Bx+C=00D
126 35 adantr φ0DB
127 30 adantr φ0DD
128 simpr φ0D0D
129 127 128 resqrtcld φ0DD
130 126 129 readdcld φ0D-B+D
131 19 a1i φ0D2
132 1 adantr φ0DA
133 131 132 remulcld φ0D2A
134 95 adantr φ0D2A0
135 130 133 134 redivcld φ0D-B+D2A
136 oveq1 x=-B+D2Ax2=-B+D2A2
137 136 oveq2d x=-B+D2AAx2=A-B+D2A2
138 oveq2 x=-B+D2ABx=B-B+D2A
139 138 oveq1d x=-B+D2ABx+C=B-B+D2A+C
140 137 139 oveq12d x=-B+D2AAx2+Bx+C=A-B+D2A2+B-B+D2A+C
141 140 eqeq1d x=-B+D2AAx2+Bx+C=0A-B+D2A2+B-B+D2A+C=0
142 141 adantl φ0Dx=-B+D2AAx2+Bx+C=0A-B+D2A2+B-B+D2A+C=0
143 eqidd φ0D-B+D2A=-B+D2A
144 143 orcd φ0D-B+D2A=-B+D2A-B+D2A=-B-D2A
145 6 adantr φ0DA
146 2 adantr φ0DA0
147 9 adantr φ0DB
148 11 adantr φ0DC
149 92 6 mulcld φ2A
150 33 149 95 divcld φ-B+D2A
151 150 adantr φ0D-B+D2A
152 5 adantr φ0DD=B24AC
153 145 146 147 148 151 152 quad φ0DA-B+D2A2+B-B+D2A+C=0-B+D2A=-B+D2A-B+D2A=-B-D2A
154 144 153 mpbird φ0DA-B+D2A2+B-B+D2A+C=0
155 135 142 154 rspcedvd φ0DxAx2+Bx+C=0
156 155 ex φ0DxAx2+Bx+C=0
157 125 156 impbid φxAx2+Bx+C=00D