Metamath Proof Explorer


Theorem resspsrmul

Description: A restricted power series algebra has the same multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015)

Ref Expression
Hypotheses resspsr.s S=ImPwSerR
resspsr.h H=R𝑠T
resspsr.u U=ImPwSerH
resspsr.b B=BaseU
resspsr.p P=S𝑠B
resspsr.2 φTSubRingR
Assertion resspsrmul φXBYBXUY=XPY

Proof

Step Hyp Ref Expression
1 resspsr.s S=ImPwSerR
2 resspsr.h H=R𝑠T
3 resspsr.u U=ImPwSerH
4 resspsr.b B=BaseU
5 resspsr.p P=S𝑠B
6 resspsr.2 φTSubRingR
7 eqid f0I|f-1Fin=f0I|f-1Fin
8 7 psrbaglefi kf0I|f-1Finyf0I|f-1Fin|yfkFin
9 8 adantl φXBYBkf0I|f-1Finyf0I|f-1Fin|yfkFin
10 subrgsubg TSubRingRTSubGrpR
11 6 10 syl φTSubGrpR
12 subgsubm TSubGrpRTSubMndR
13 11 12 syl φTSubMndR
14 13 ad2antrr φXBYBkf0I|f-1FinTSubMndR
15 6 ad3antrrr φXBYBkf0I|f-1Finxyf0I|f-1Fin|yfkTSubRingR
16 eqid BaseH=BaseH
17 simprl φXBYBXB
18 3 16 7 4 17 psrelbas φXBYBX:f0I|f-1FinBaseH
19 18 adantr φXBYBkf0I|f-1FinX:f0I|f-1FinBaseH
20 elrabi xyf0I|f-1Fin|yfkxf0I|f-1Fin
21 ffvelcdm X:f0I|f-1FinBaseHxf0I|f-1FinXxBaseH
22 19 20 21 syl2an φXBYBkf0I|f-1Finxyf0I|f-1Fin|yfkXxBaseH
23 2 subrgbas TSubRingRT=BaseH
24 15 23 syl φXBYBkf0I|f-1Finxyf0I|f-1Fin|yfkT=BaseH
25 22 24 eleqtrrd φXBYBkf0I|f-1Finxyf0I|f-1Fin|yfkXxT
26 simprr φXBYBYB
27 3 16 7 4 26 psrelbas φXBYBY:f0I|f-1FinBaseH
28 27 ad2antrr φXBYBkf0I|f-1Finxyf0I|f-1Fin|yfkY:f0I|f-1FinBaseH
29 ssrab2 yf0I|f-1Fin|yfkf0I|f-1Fin
30 simplr φXBYBkf0I|f-1Finxyf0I|f-1Fin|yfkkf0I|f-1Fin
31 simpr φXBYBkf0I|f-1Finxyf0I|f-1Fin|yfkxyf0I|f-1Fin|yfk
32 eqid yf0I|f-1Fin|yfk=yf0I|f-1Fin|yfk
33 7 32 psrbagconcl kf0I|f-1Finxyf0I|f-1Fin|yfkkfxyf0I|f-1Fin|yfk
34 30 31 33 syl2anc φXBYBkf0I|f-1Finxyf0I|f-1Fin|yfkkfxyf0I|f-1Fin|yfk
35 29 34 sselid φXBYBkf0I|f-1Finxyf0I|f-1Fin|yfkkfxf0I|f-1Fin
36 28 35 ffvelcdmd φXBYBkf0I|f-1Finxyf0I|f-1Fin|yfkYkfxBaseH
37 36 24 eleqtrrd φXBYBkf0I|f-1Finxyf0I|f-1Fin|yfkYkfxT
38 eqid R=R
39 38 subrgmcl TSubRingRXxTYkfxTXxRYkfxT
40 15 25 37 39 syl3anc φXBYBkf0I|f-1Finxyf0I|f-1Fin|yfkXxRYkfxT
41 40 fmpttd φXBYBkf0I|f-1Finxyf0I|f-1Fin|yfkXxRYkfx:yf0I|f-1Fin|yfkT
42 9 14 41 2 gsumsubm φXBYBkf0I|f-1FinRxyf0I|f-1Fin|yfkXxRYkfx=Hxyf0I|f-1Fin|yfkXxRYkfx
43 2 38 ressmulr TSubRingRR=H
44 6 43 syl φR=H
45 44 ad3antrrr φXBYBkf0I|f-1Finxyf0I|f-1Fin|yfkR=H
46 45 oveqd φXBYBkf0I|f-1Finxyf0I|f-1Fin|yfkXxRYkfx=XxHYkfx
47 46 mpteq2dva φXBYBkf0I|f-1Finxyf0I|f-1Fin|yfkXxRYkfx=xyf0I|f-1Fin|yfkXxHYkfx
48 47 oveq2d φXBYBkf0I|f-1FinHxyf0I|f-1Fin|yfkXxRYkfx=Hxyf0I|f-1Fin|yfkXxHYkfx
49 42 48 eqtrd φXBYBkf0I|f-1FinRxyf0I|f-1Fin|yfkXxRYkfx=Hxyf0I|f-1Fin|yfkXxHYkfx
50 49 mpteq2dva φXBYBkf0I|f-1FinRxyf0I|f-1Fin|yfkXxRYkfx=kf0I|f-1FinHxyf0I|f-1Fin|yfkXxHYkfx
51 eqid BaseS=BaseS
52 eqid S=S
53 fvex BaseRV
54 6 23 syl φT=BaseH
55 eqid BaseR=BaseR
56 55 subrgss TSubRingRTBaseR
57 6 56 syl φTBaseR
58 54 57 eqsstrrd φBaseHBaseR
59 mapss BaseRVBaseHBaseRBaseHf0I|f-1FinBaseRf0I|f-1Fin
60 53 58 59 sylancr φBaseHf0I|f-1FinBaseRf0I|f-1Fin
61 60 adantr φXBYBBaseHf0I|f-1FinBaseRf0I|f-1Fin
62 reldmpsr ReldommPwSer
63 62 3 4 elbasov XBIVHV
64 63 ad2antrl φXBYBIVHV
65 64 simpld φXBYBIV
66 3 16 7 4 65 psrbas φXBYBB=BaseHf0I|f-1Fin
67 1 55 7 51 65 psrbas φXBYBBaseS=BaseRf0I|f-1Fin
68 61 66 67 3sstr4d φXBYBBBaseS
69 68 17 sseldd φXBYBXBaseS
70 68 26 sseldd φXBYBYBaseS
71 1 51 38 52 7 69 70 psrmulfval φXBYBXSY=kf0I|f-1FinRxyf0I|f-1Fin|yfkXxRYkfx
72 eqid H=H
73 eqid U=U
74 3 4 72 73 7 17 26 psrmulfval φXBYBXUY=kf0I|f-1FinHxyf0I|f-1Fin|yfkXxHYkfx
75 50 71 74 3eqtr4rd φXBYBXUY=XSY
76 4 fvexi BV
77 5 52 ressmulr BVS=P
78 76 77 mp1i φXBYBS=P
79 78 oveqd φXBYBXSY=XPY
80 75 79 eqtrd φXBYBXUY=XPY