Metamath Proof Explorer


Theorem seqf1o

Description: Rearrange a sum via an arbitrary bijection on ( M ... N ) . (Contributed by Mario Carneiro, 27-Feb-2014) (Revised by Mario Carneiro, 24-Apr-2016)

Ref Expression
Hypotheses seqf1o.1 φxSySx+˙yS
seqf1o.2 φxCyCx+˙y=y+˙x
seqf1o.3 φxSySzSx+˙y+˙z=x+˙y+˙z
seqf1o.4 φNM
seqf1o.5 φCS
seqf1o.6 φF:MN1-1 ontoMN
seqf1o.7 φxMNGxC
seqf1o.8 φkMNHk=GFk
Assertion seqf1o φseqM+˙HN=seqM+˙GN

Proof

Step Hyp Ref Expression
1 seqf1o.1 φxSySx+˙yS
2 seqf1o.2 φxCyCx+˙y=y+˙x
3 seqf1o.3 φxSySzSx+˙y+˙z=x+˙y+˙z
4 seqf1o.4 φNM
5 seqf1o.5 φCS
6 seqf1o.6 φF:MN1-1 ontoMN
7 seqf1o.7 φxMNGxC
8 seqf1o.8 φkMNHk=GFk
9 7 fmpttd φxMNGx:MNC
10 oveq2 x=MMx=MM
11 f1oeq23 Mx=MMMx=MMf:Mx1-1 ontoMxf:MM1-1 ontoMM
12 10 10 11 syl2anc x=Mf:Mx1-1 ontoMxf:MM1-1 ontoMM
13 10 feq2d x=Mg:MxCg:MMC
14 12 13 anbi12d x=Mf:Mx1-1 ontoMxg:MxCf:MM1-1 ontoMMg:MMC
15 fveq2 x=MseqM+˙gfx=seqM+˙gfM
16 fveq2 x=MseqM+˙gx=seqM+˙gM
17 15 16 eqeq12d x=MseqM+˙gfx=seqM+˙gxseqM+˙gfM=seqM+˙gM
18 14 17 imbi12d x=Mf:Mx1-1 ontoMxg:MxCseqM+˙gfx=seqM+˙gxf:MM1-1 ontoMMg:MMCseqM+˙gfM=seqM+˙gM
19 18 2albidv x=Mgff:Mx1-1 ontoMxg:MxCseqM+˙gfx=seqM+˙gxgff:MM1-1 ontoMMg:MMCseqM+˙gfM=seqM+˙gM
20 19 imbi2d x=Mφgff:Mx1-1 ontoMxg:MxCseqM+˙gfx=seqM+˙gxφgff:MM1-1 ontoMMg:MMCseqM+˙gfM=seqM+˙gM
21 oveq2 x=kMx=Mk
22 f1oeq23 Mx=MkMx=Mkf:Mx1-1 ontoMxf:Mk1-1 ontoMk
23 21 21 22 syl2anc x=kf:Mx1-1 ontoMxf:Mk1-1 ontoMk
24 21 feq2d x=kg:MxCg:MkC
25 23 24 anbi12d x=kf:Mx1-1 ontoMxg:MxCf:Mk1-1 ontoMkg:MkC
26 fveq2 x=kseqM+˙gfx=seqM+˙gfk
27 fveq2 x=kseqM+˙gx=seqM+˙gk
28 26 27 eqeq12d x=kseqM+˙gfx=seqM+˙gxseqM+˙gfk=seqM+˙gk
29 25 28 imbi12d x=kf:Mx1-1 ontoMxg:MxCseqM+˙gfx=seqM+˙gxf:Mk1-1 ontoMkg:MkCseqM+˙gfk=seqM+˙gk
30 29 2albidv x=kgff:Mx1-1 ontoMxg:MxCseqM+˙gfx=seqM+˙gxgff:Mk1-1 ontoMkg:MkCseqM+˙gfk=seqM+˙gk
31 30 imbi2d x=kφgff:Mx1-1 ontoMxg:MxCseqM+˙gfx=seqM+˙gxφgff:Mk1-1 ontoMkg:MkCseqM+˙gfk=seqM+˙gk
32 oveq2 x=k+1Mx=Mk+1
33 f1oeq23 Mx=Mk+1Mx=Mk+1f:Mx1-1 ontoMxf:Mk+11-1 ontoMk+1
34 32 32 33 syl2anc x=k+1f:Mx1-1 ontoMxf:Mk+11-1 ontoMk+1
35 32 feq2d x=k+1g:MxCg:Mk+1C
36 34 35 anbi12d x=k+1f:Mx1-1 ontoMxg:MxCf:Mk+11-1 ontoMk+1g:Mk+1C
37 fveq2 x=k+1seqM+˙gfx=seqM+˙gfk+1
38 fveq2 x=k+1seqM+˙gx=seqM+˙gk+1
39 37 38 eqeq12d x=k+1seqM+˙gfx=seqM+˙gxseqM+˙gfk+1=seqM+˙gk+1
40 36 39 imbi12d x=k+1f:Mx1-1 ontoMxg:MxCseqM+˙gfx=seqM+˙gxf:Mk+11-1 ontoMk+1g:Mk+1CseqM+˙gfk+1=seqM+˙gk+1
41 40 2albidv x=k+1gff:Mx1-1 ontoMxg:MxCseqM+˙gfx=seqM+˙gxgff:Mk+11-1 ontoMk+1g:Mk+1CseqM+˙gfk+1=seqM+˙gk+1
42 41 imbi2d x=k+1φgff:Mx1-1 ontoMxg:MxCseqM+˙gfx=seqM+˙gxφgff:Mk+11-1 ontoMk+1g:Mk+1CseqM+˙gfk+1=seqM+˙gk+1
43 oveq2 x=NMx=MN
44 f1oeq23 Mx=MNMx=MNf:Mx1-1 ontoMxf:MN1-1 ontoMN
45 43 43 44 syl2anc x=Nf:Mx1-1 ontoMxf:MN1-1 ontoMN
46 43 feq2d x=Ng:MxCg:MNC
47 45 46 anbi12d x=Nf:Mx1-1 ontoMxg:MxCf:MN1-1 ontoMNg:MNC
48 fveq2 x=NseqM+˙gfx=seqM+˙gfN
49 fveq2 x=NseqM+˙gx=seqM+˙gN
50 48 49 eqeq12d x=NseqM+˙gfx=seqM+˙gxseqM+˙gfN=seqM+˙gN
51 47 50 imbi12d x=Nf:Mx1-1 ontoMxg:MxCseqM+˙gfx=seqM+˙gxf:MN1-1 ontoMNg:MNCseqM+˙gfN=seqM+˙gN
52 51 2albidv x=Ngff:Mx1-1 ontoMxg:MxCseqM+˙gfx=seqM+˙gxgff:MN1-1 ontoMNg:MNCseqM+˙gfN=seqM+˙gN
53 52 imbi2d x=Nφgff:Mx1-1 ontoMxg:MxCseqM+˙gfx=seqM+˙gxφgff:MN1-1 ontoMNg:MNCseqM+˙gfN=seqM+˙gN
54 f1of f:MM1-1 ontoMMf:MMMM
55 54 adantr f:MM1-1 ontoMMg:MMCf:MMMM
56 elfz3 MMMM
57 fvco3 f:MMMMMMMgfM=gfM
58 55 56 57 syl2anr Mf:MM1-1 ontoMMg:MMCgfM=gfM
59 ffvelcdm f:MMMMMMMfMMM
60 54 56 59 syl2anr Mf:MM1-1 ontoMMfMMM
61 fzsn MMM=M
62 61 eleq2d MfMMMfMM
63 elsni fMMfM=M
64 62 63 syl6bi MfMMMfM=M
65 64 imp MfMMMfM=M
66 60 65 syldan Mf:MM1-1 ontoMMfM=M
67 66 adantrr Mf:MM1-1 ontoMMg:MMCfM=M
68 67 fveq2d Mf:MM1-1 ontoMMg:MMCgfM=gM
69 58 68 eqtrd Mf:MM1-1 ontoMMg:MMCgfM=gM
70 seq1 MseqM+˙gfM=gfM
71 70 adantr Mf:MM1-1 ontoMMg:MMCseqM+˙gfM=gfM
72 seq1 MseqM+˙gM=gM
73 72 adantr Mf:MM1-1 ontoMMg:MMCseqM+˙gM=gM
74 69 71 73 3eqtr4d Mf:MM1-1 ontoMMg:MMCseqM+˙gfM=seqM+˙gM
75 74 ex Mf:MM1-1 ontoMMg:MMCseqM+˙gfM=seqM+˙gM
76 75 alrimivv Mgff:MM1-1 ontoMMg:MMCseqM+˙gfM=seqM+˙gM
77 76 a1d Mφgff:MM1-1 ontoMMg:MMCseqM+˙gfM=seqM+˙gM
78 f1oeq1 f=tf:Mk1-1 ontoMkt:Mk1-1 ontoMk
79 feq1 g=sg:MkCs:MkC
80 78 79 bi2anan9r g=sf=tf:Mk1-1 ontoMkg:MkCt:Mk1-1 ontoMks:MkC
81 coeq1 g=sgf=sf
82 coeq2 f=tsf=st
83 81 82 sylan9eq g=sf=tgf=st
84 83 seqeq3d g=sf=tseqM+˙gf=seqM+˙st
85 84 fveq1d g=sf=tseqM+˙gfk=seqM+˙stk
86 simpl g=sf=tg=s
87 86 seqeq3d g=sf=tseqM+˙g=seqM+˙s
88 87 fveq1d g=sf=tseqM+˙gk=seqM+˙sk
89 85 88 eqeq12d g=sf=tseqM+˙gfk=seqM+˙gkseqM+˙stk=seqM+˙sk
90 80 89 imbi12d g=sf=tf:Mk1-1 ontoMkg:MkCseqM+˙gfk=seqM+˙gkt:Mk1-1 ontoMks:MkCseqM+˙stk=seqM+˙sk
91 90 cbval2vw gff:Mk1-1 ontoMkg:MkCseqM+˙gfk=seqM+˙gkstt:Mk1-1 ontoMks:MkCseqM+˙stk=seqM+˙sk
92 simplll φkMgff:Mk1-1 ontoMkg:MkCseqM+˙gfk=seqM+˙gkf:Mk+11-1 ontoMk+1g:Mk+1Cφ
93 92 1 sylan φkMgff:Mk1-1 ontoMkg:MkCseqM+˙gfk=seqM+˙gkf:Mk+11-1 ontoMk+1g:Mk+1CxSySx+˙yS
94 92 2 sylan φkMgff:Mk1-1 ontoMkg:MkCseqM+˙gfk=seqM+˙gkf:Mk+11-1 ontoMk+1g:Mk+1CxCyCx+˙y=y+˙x
95 92 3 sylan φkMgff:Mk1-1 ontoMkg:MkCseqM+˙gfk=seqM+˙gkf:Mk+11-1 ontoMk+1g:Mk+1CxSySzSx+˙y+˙z=x+˙y+˙z
96 simpllr φkMgff:Mk1-1 ontoMkg:MkCseqM+˙gfk=seqM+˙gkf:Mk+11-1 ontoMk+1g:Mk+1CkM
97 92 5 syl φkMgff:Mk1-1 ontoMkg:MkCseqM+˙gfk=seqM+˙gkf:Mk+11-1 ontoMk+1g:Mk+1CCS
98 simprl φkMgff:Mk1-1 ontoMkg:MkCseqM+˙gfk=seqM+˙gkf:Mk+11-1 ontoMk+1g:Mk+1Cf:Mk+11-1 ontoMk+1
99 simprr φkMgff:Mk1-1 ontoMkg:MkCseqM+˙gfk=seqM+˙gkf:Mk+11-1 ontoMk+1g:Mk+1Cg:Mk+1C
100 eqid wMkfifw<f-1k+1ww+1=wMkfifw<f-1k+1ww+1
101 eqid f-1k+1=f-1k+1
102 simplr φkMgff:Mk1-1 ontoMkg:MkCseqM+˙gfk=seqM+˙gkf:Mk+11-1 ontoMk+1g:Mk+1Cgff:Mk1-1 ontoMkg:MkCseqM+˙gfk=seqM+˙gk
103 102 91 sylib φkMgff:Mk1-1 ontoMkg:MkCseqM+˙gfk=seqM+˙gkf:Mk+11-1 ontoMk+1g:Mk+1Cstt:Mk1-1 ontoMks:MkCseqM+˙stk=seqM+˙sk
104 93 94 95 96 97 98 99 100 101 103 seqf1olem2 φkMgff:Mk1-1 ontoMkg:MkCseqM+˙gfk=seqM+˙gkf:Mk+11-1 ontoMk+1g:Mk+1CseqM+˙gfk+1=seqM+˙gk+1
105 104 exp31 φkMgff:Mk1-1 ontoMkg:MkCseqM+˙gfk=seqM+˙gkf:Mk+11-1 ontoMk+1g:Mk+1CseqM+˙gfk+1=seqM+˙gk+1
106 91 105 biimtrrid φkMstt:Mk1-1 ontoMks:MkCseqM+˙stk=seqM+˙skf:Mk+11-1 ontoMk+1g:Mk+1CseqM+˙gfk+1=seqM+˙gk+1
107 106 alrimdv φkMstt:Mk1-1 ontoMks:MkCseqM+˙stk=seqM+˙skff:Mk+11-1 ontoMk+1g:Mk+1CseqM+˙gfk+1=seqM+˙gk+1
108 107 alrimdv φkMstt:Mk1-1 ontoMks:MkCseqM+˙stk=seqM+˙skgff:Mk+11-1 ontoMk+1g:Mk+1CseqM+˙gfk+1=seqM+˙gk+1
109 91 108 biimtrid φkMgff:Mk1-1 ontoMkg:MkCseqM+˙gfk=seqM+˙gkgff:Mk+11-1 ontoMk+1g:Mk+1CseqM+˙gfk+1=seqM+˙gk+1
110 109 expcom kMφgff:Mk1-1 ontoMkg:MkCseqM+˙gfk=seqM+˙gkgff:Mk+11-1 ontoMk+1g:Mk+1CseqM+˙gfk+1=seqM+˙gk+1
111 110 a2d kMφgff:Mk1-1 ontoMkg:MkCseqM+˙gfk=seqM+˙gkφgff:Mk+11-1 ontoMk+1g:Mk+1CseqM+˙gfk+1=seqM+˙gk+1
112 20 31 42 53 77 111 uzind4 NMφgff:MN1-1 ontoMNg:MNCseqM+˙gfN=seqM+˙gN
113 4 112 mpcom φgff:MN1-1 ontoMNg:MNCseqM+˙gfN=seqM+˙gN
114 fvex GxV
115 eqid xMNGx=xMNGx
116 114 115 fnmpti xMNGxFnMN
117 fzfi MNFin
118 fnfi xMNGxFnMNMNFinxMNGxFin
119 116 117 118 mp2an xMNGxFin
120 f1of F:MN1-1 ontoMNF:MNMN
121 6 120 syl φF:MNMN
122 ovexd φMNV
123 fex2 F:MNMNMNVMNVFV
124 121 122 122 123 syl3anc φFV
125 f1oeq1 f=Ff:MN1-1 ontoMNF:MN1-1 ontoMN
126 feq1 g=xMNGxg:MNCxMNGx:MNC
127 125 126 bi2anan9r g=xMNGxf=Ff:MN1-1 ontoMNg:MNCF:MN1-1 ontoMNxMNGx:MNC
128 coeq1 g=xMNGxgf=xMNGxf
129 coeq2 f=FxMNGxf=xMNGxF
130 128 129 sylan9eq g=xMNGxf=Fgf=xMNGxF
131 130 seqeq3d g=xMNGxf=FseqM+˙gf=seqM+˙xMNGxF
132 131 fveq1d g=xMNGxf=FseqM+˙gfN=seqM+˙xMNGxFN
133 simpl g=xMNGxf=Fg=xMNGx
134 133 seqeq3d g=xMNGxf=FseqM+˙g=seqM+˙xMNGx
135 134 fveq1d g=xMNGxf=FseqM+˙gN=seqM+˙xMNGxN
136 132 135 eqeq12d g=xMNGxf=FseqM+˙gfN=seqM+˙gNseqM+˙xMNGxFN=seqM+˙xMNGxN
137 127 136 imbi12d g=xMNGxf=Ff:MN1-1 ontoMNg:MNCseqM+˙gfN=seqM+˙gNF:MN1-1 ontoMNxMNGx:MNCseqM+˙xMNGxFN=seqM+˙xMNGxN
138 137 spc2gv xMNGxFinFVgff:MN1-1 ontoMNg:MNCseqM+˙gfN=seqM+˙gNF:MN1-1 ontoMNxMNGx:MNCseqM+˙xMNGxFN=seqM+˙xMNGxN
139 119 124 138 sylancr φgff:MN1-1 ontoMNg:MNCseqM+˙gfN=seqM+˙gNF:MN1-1 ontoMNxMNGx:MNCseqM+˙xMNGxFN=seqM+˙xMNGxN
140 113 139 mpd φF:MN1-1 ontoMNxMNGx:MNCseqM+˙xMNGxFN=seqM+˙xMNGxN
141 6 9 140 mp2and φseqM+˙xMNGxFN=seqM+˙xMNGxN
142 121 ffvelcdmda φkMNFkMN
143 fveq2 x=FkGx=GFk
144 fvex GFkV
145 143 115 144 fvmpt FkMNxMNGxFk=GFk
146 142 145 syl φkMNxMNGxFk=GFk
147 fvco3 F:MNMNkMNxMNGxFk=xMNGxFk
148 121 147 sylan φkMNxMNGxFk=xMNGxFk
149 146 148 8 3eqtr4d φkMNxMNGxFk=Hk
150 4 149 seqfveq φseqM+˙xMNGxFN=seqM+˙HN
151 fveq2 x=kGx=Gk
152 fvex GkV
153 151 115 152 fvmpt kMNxMNGxk=Gk
154 153 adantl φkMNxMNGxk=Gk
155 4 154 seqfveq φseqM+˙xMNGxN=seqM+˙GN
156 141 150 155 3eqtr3d φseqM+˙HN=seqM+˙GN