Metamath Proof Explorer


Theorem seqf1olem1

Description: Lemma for seqf1o . (Contributed by Mario Carneiro, 26-Feb-2014) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses seqf1o.1 φxSySx+˙yS
seqf1o.2 φxCyCx+˙y=y+˙x
seqf1o.3 φxSySzSx+˙y+˙z=x+˙y+˙z
seqf1o.4 φNM
seqf1o.5 φCS
seqf1olem.5 φF:MN+11-1 ontoMN+1
seqf1olem.6 φG:MN+1C
seqf1olem.7 J=kMNFifk<Kkk+1
seqf1olem.8 K=F-1N+1
Assertion seqf1olem1 φJ:MN1-1 ontoMN

Proof

Step Hyp Ref Expression
1 seqf1o.1 φxSySx+˙yS
2 seqf1o.2 φxCyCx+˙y=y+˙x
3 seqf1o.3 φxSySzSx+˙y+˙z=x+˙y+˙z
4 seqf1o.4 φNM
5 seqf1o.5 φCS
6 seqf1olem.5 φF:MN+11-1 ontoMN+1
7 seqf1olem.6 φG:MN+1C
8 seqf1olem.7 J=kMNFifk<Kkk+1
9 seqf1olem.8 K=F-1N+1
10 fvexd φkMNFifk<Kkk+1V
11 fvex F-1xV
12 ovex F-1x1V
13 11 12 ifex ifF-1x<KF-1xF-1x1V
14 13 a1i φxMNifF-1x<KF-1xF-1x1V
15 iftrue k<Kifk<Kkk+1=k
16 15 fveq2d k<KFifk<Kkk+1=Fk
17 16 eqeq2d k<Kx=Fifk<Kkk+1x=Fk
18 17 adantl φkMNk<Kx=Fifk<Kkk+1x=Fk
19 simprr φkMNk<Kx=Fkx=Fk
20 elfzelz kMNk
21 20 zred kMNk
22 21 ad2antlr φkMNk<Kx=Fkk
23 simprl φkMNk<Kx=Fkk<K
24 22 23 gtned φkMNk<Kx=FkKk
25 f1of F:MN+11-1 ontoMN+1F:MN+1MN+1
26 6 25 syl φF:MN+1MN+1
27 26 ad2antrr φkMNk<Kx=FkF:MN+1MN+1
28 fzssp1 MNMN+1
29 simplr φkMNk<Kx=FkkMN
30 28 29 sselid φkMNk<Kx=FkkMN+1
31 27 30 ffvelcdmd φkMNk<Kx=FkFkMN+1
32 elfzp1 NMFkMN+1FkMNFk=N+1
33 4 32 syl φFkMN+1FkMNFk=N+1
34 33 ad2antrr φkMNk<Kx=FkFkMN+1FkMNFk=N+1
35 31 34 mpbid φkMNk<Kx=FkFkMNFk=N+1
36 35 ord φkMNk<Kx=Fk¬FkMNFk=N+1
37 6 ad2antrr φkMNk<Kx=FkF:MN+11-1 ontoMN+1
38 f1ocnvfv F:MN+11-1 ontoMN+1kMN+1Fk=N+1F-1N+1=k
39 37 30 38 syl2anc φkMNk<Kx=FkFk=N+1F-1N+1=k
40 9 eqeq1i K=kF-1N+1=k
41 39 40 syl6ibr φkMNk<Kx=FkFk=N+1K=k
42 36 41 syld φkMNk<Kx=Fk¬FkMNK=k
43 42 necon1ad φkMNk<Kx=FkKkFkMN
44 24 43 mpd φkMNk<Kx=FkFkMN
45 19 44 eqeltrd φkMNk<Kx=FkxMN
46 19 eqcomd φkMNk<Kx=FkFk=x
47 f1ocnvfv F:MN+11-1 ontoMN+1kMN+1Fk=xF-1x=k
48 37 30 47 syl2anc φkMNk<Kx=FkFk=xF-1x=k
49 46 48 mpd φkMNk<Kx=FkF-1x=k
50 49 23 eqbrtrd φkMNk<Kx=FkF-1x<K
51 iftrue F-1x<KifF-1x<KF-1xF-1x1=F-1x
52 50 51 syl φkMNk<Kx=FkifF-1x<KF-1xF-1x1=F-1x
53 52 49 eqtr2d φkMNk<Kx=Fkk=ifF-1x<KF-1xF-1x1
54 45 53 jca φkMNk<Kx=FkxMNk=ifF-1x<KF-1xF-1x1
55 54 expr φkMNk<Kx=FkxMNk=ifF-1x<KF-1xF-1x1
56 18 55 sylbid φkMNk<Kx=Fifk<Kkk+1xMNk=ifF-1x<KF-1xF-1x1
57 iffalse ¬k<Kifk<Kkk+1=k+1
58 57 fveq2d ¬k<KFifk<Kkk+1=Fk+1
59 58 eqeq2d ¬k<Kx=Fifk<Kkk+1x=Fk+1
60 59 adantl φkMN¬k<Kx=Fifk<Kkk+1x=Fk+1
61 simprr φkMN¬k<Kx=Fk+1x=Fk+1
62 f1ocnv F:MN+11-1 ontoMN+1F-1:MN+11-1 ontoMN+1
63 6 62 syl φF-1:MN+11-1 ontoMN+1
64 f1of1 F-1:MN+11-1 ontoMN+1F-1:MN+11-1MN+1
65 63 64 syl φF-1:MN+11-1MN+1
66 f1f F-1:MN+11-1MN+1F-1:MN+1MN+1
67 65 66 syl φF-1:MN+1MN+1
68 peano2uz NMN+1M
69 4 68 syl φN+1M
70 eluzfz2 N+1MN+1MN+1
71 69 70 syl φN+1MN+1
72 67 71 ffvelcdmd φF-1N+1MN+1
73 9 72 eqeltrid φKMN+1
74 73 elfzelzd φK
75 74 zred φK
76 75 ad2antrr φkMN¬k<Kx=Fk+1K
77 21 ad2antlr φkMN¬k<Kx=Fk+1k
78 peano2re kk+1
79 77 78 syl φkMN¬k<Kx=Fk+1k+1
80 simprl φkMN¬k<Kx=Fk+1¬k<K
81 76 77 80 nltled φkMN¬k<Kx=Fk+1Kk
82 77 ltp1d φkMN¬k<Kx=Fk+1k<k+1
83 76 77 79 81 82 lelttrd φkMN¬k<Kx=Fk+1K<k+1
84 76 83 ltned φkMN¬k<Kx=Fk+1Kk+1
85 26 ad2antrr φkMN¬k<Kx=Fk+1F:MN+1MN+1
86 fzp1elp1 kMNk+1MN+1
87 86 ad2antlr φkMN¬k<Kx=Fk+1k+1MN+1
88 85 87 ffvelcdmd φkMN¬k<Kx=Fk+1Fk+1MN+1
89 elfzp1 NMFk+1MN+1Fk+1MNFk+1=N+1
90 4 89 syl φFk+1MN+1Fk+1MNFk+1=N+1
91 90 ad2antrr φkMN¬k<Kx=Fk+1Fk+1MN+1Fk+1MNFk+1=N+1
92 88 91 mpbid φkMN¬k<Kx=Fk+1Fk+1MNFk+1=N+1
93 92 ord φkMN¬k<Kx=Fk+1¬Fk+1MNFk+1=N+1
94 6 ad2antrr φkMN¬k<Kx=Fk+1F:MN+11-1 ontoMN+1
95 f1ocnvfv F:MN+11-1 ontoMN+1k+1MN+1Fk+1=N+1F-1N+1=k+1
96 94 87 95 syl2anc φkMN¬k<Kx=Fk+1Fk+1=N+1F-1N+1=k+1
97 9 eqeq1i K=k+1F-1N+1=k+1
98 96 97 syl6ibr φkMN¬k<Kx=Fk+1Fk+1=N+1K=k+1
99 93 98 syld φkMN¬k<Kx=Fk+1¬Fk+1MNK=k+1
100 99 necon1ad φkMN¬k<Kx=Fk+1Kk+1Fk+1MN
101 84 100 mpd φkMN¬k<Kx=Fk+1Fk+1MN
102 61 101 eqeltrd φkMN¬k<Kx=Fk+1xMN
103 61 eqcomd φkMN¬k<Kx=Fk+1Fk+1=x
104 f1ocnvfv F:MN+11-1 ontoMN+1k+1MN+1Fk+1=xF-1x=k+1
105 94 87 104 syl2anc φkMN¬k<Kx=Fk+1Fk+1=xF-1x=k+1
106 103 105 mpd φkMN¬k<Kx=Fk+1F-1x=k+1
107 106 breq1d φkMN¬k<Kx=Fk+1F-1x<Kk+1<K
108 lttr kk+1Kk<k+1k+1<Kk<K
109 77 79 76 108 syl3anc φkMN¬k<Kx=Fk+1k<k+1k+1<Kk<K
110 82 109 mpand φkMN¬k<Kx=Fk+1k+1<Kk<K
111 107 110 sylbid φkMN¬k<Kx=Fk+1F-1x<Kk<K
112 80 111 mtod φkMN¬k<Kx=Fk+1¬F-1x<K
113 iffalse ¬F-1x<KifF-1x<KF-1xF-1x1=F-1x1
114 112 113 syl φkMN¬k<Kx=Fk+1ifF-1x<KF-1xF-1x1=F-1x1
115 106 oveq1d φkMN¬k<Kx=Fk+1F-1x1=k+1-1
116 77 recnd φkMN¬k<Kx=Fk+1k
117 ax-1cn 1
118 pncan k1k+1-1=k
119 116 117 118 sylancl φkMN¬k<Kx=Fk+1k+1-1=k
120 114 115 119 3eqtrrd φkMN¬k<Kx=Fk+1k=ifF-1x<KF-1xF-1x1
121 102 120 jca φkMN¬k<Kx=Fk+1xMNk=ifF-1x<KF-1xF-1x1
122 121 expr φkMN¬k<Kx=Fk+1xMNk=ifF-1x<KF-1xF-1x1
123 60 122 sylbid φkMN¬k<Kx=Fifk<Kkk+1xMNk=ifF-1x<KF-1xF-1x1
124 56 123 pm2.61dan φkMNx=Fifk<Kkk+1xMNk=ifF-1x<KF-1xF-1x1
125 124 expimpd φkMNx=Fifk<Kkk+1xMNk=ifF-1x<KF-1xF-1x1
126 51 eqeq2d F-1x<Kk=ifF-1x<KF-1xF-1x1k=F-1x
127 126 adantl φxMNF-1x<Kk=ifF-1x<KF-1xF-1x1k=F-1x
128 eluzel2 NMM
129 4 128 syl φM
130 129 ad2antrr φxMNF-1x<Kk=F-1xM
131 eluzelz NMN
132 4 131 syl φN
133 132 ad2antrr φxMNF-1x<Kk=F-1xN
134 simprr φxMNF-1x<Kk=F-1xk=F-1x
135 67 ad2antrr φxMNF-1x<Kk=F-1xF-1:MN+1MN+1
136 simplr φxMNF-1x<Kk=F-1xxMN
137 28 136 sselid φxMNF-1x<Kk=F-1xxMN+1
138 135 137 ffvelcdmd φxMNF-1x<Kk=F-1xF-1xMN+1
139 134 138 eqeltrd φxMNF-1x<Kk=F-1xkMN+1
140 139 elfzelzd φxMNF-1x<Kk=F-1xk
141 elfzle1 kMN+1Mk
142 139 141 syl φxMNF-1x<Kk=F-1xMk
143 140 zred φxMNF-1x<Kk=F-1xk
144 75 ad2antrr φxMNF-1x<Kk=F-1xK
145 132 peano2zd φN+1
146 145 zred φN+1
147 146 ad2antrr φxMNF-1x<Kk=F-1xN+1
148 simprl φxMNF-1x<Kk=F-1xF-1x<K
149 134 148 eqbrtrd φxMNF-1x<Kk=F-1xk<K
150 elfzle2 KMN+1KN+1
151 73 150 syl φKN+1
152 151 ad2antrr φxMNF-1x<Kk=F-1xKN+1
153 143 144 147 149 152 ltletrd φxMNF-1x<Kk=F-1xk<N+1
154 zleltp1 kNkNk<N+1
155 140 133 154 syl2anc φxMNF-1x<Kk=F-1xkNk<N+1
156 153 155 mpbird φxMNF-1x<Kk=F-1xkN
157 130 133 140 142 156 elfzd φxMNF-1x<Kk=F-1xkMN
158 149 16 syl φxMNF-1x<Kk=F-1xFifk<Kkk+1=Fk
159 134 fveq2d φxMNF-1x<Kk=F-1xFk=FF-1x
160 6 ad2antrr φxMNF-1x<Kk=F-1xF:MN+11-1 ontoMN+1
161 f1ocnvfv2 F:MN+11-1 ontoMN+1xMN+1FF-1x=x
162 160 137 161 syl2anc φxMNF-1x<Kk=F-1xFF-1x=x
163 158 159 162 3eqtrrd φxMNF-1x<Kk=F-1xx=Fifk<Kkk+1
164 157 163 jca φxMNF-1x<Kk=F-1xkMNx=Fifk<Kkk+1
165 164 expr φxMNF-1x<Kk=F-1xkMNx=Fifk<Kkk+1
166 127 165 sylbid φxMNF-1x<Kk=ifF-1x<KF-1xF-1x1kMNx=Fifk<Kkk+1
167 113 eqeq2d ¬F-1x<Kk=ifF-1x<KF-1xF-1x1k=F-1x1
168 167 adantl φxMN¬F-1x<Kk=ifF-1x<KF-1xF-1x1k=F-1x1
169 129 ad2antrr φxMN¬F-1x<Kk=F-1x1M
170 132 ad2antrr φxMN¬F-1x<Kk=F-1x1N
171 simprr φxMN¬F-1x<Kk=F-1x1k=F-1x1
172 67 ad2antrr φxMN¬F-1x<Kk=F-1x1F-1:MN+1MN+1
173 simplr φxMN¬F-1x<Kk=F-1x1xMN
174 28 173 sselid φxMN¬F-1x<Kk=F-1x1xMN+1
175 172 174 ffvelcdmd φxMN¬F-1x<Kk=F-1x1F-1xMN+1
176 175 elfzelzd φxMN¬F-1x<Kk=F-1x1F-1x
177 peano2zm F-1xF-1x1
178 176 177 syl φxMN¬F-1x<Kk=F-1x1F-1x1
179 171 178 eqeltrd φxMN¬F-1x<Kk=F-1x1k
180 129 zred φM
181 180 ad2antrr φxMN¬F-1x<Kk=F-1x1M
182 75 ad2antrr φxMN¬F-1x<Kk=F-1x1K
183 179 zred φxMN¬F-1x<Kk=F-1x1k
184 elfzle1 KMN+1MK
185 73 184 syl φMK
186 185 ad2antrr φxMN¬F-1x<Kk=F-1x1MK
187 176 zred φxMN¬F-1x<Kk=F-1x1F-1x
188 simprl φxMN¬F-1x<Kk=F-1x1¬F-1x<K
189 182 187 188 nltled φxMN¬F-1x<Kk=F-1x1KF-1x
190 elfzelz xMNx
191 190 adantl φxMNx
192 191 zred φxMNx
193 132 zred φN
194 193 adantr φxMNN
195 146 adantr φxMNN+1
196 elfzle2 xMNxN
197 196 adantl φxMNxN
198 194 ltp1d φxMNN<N+1
199 192 194 195 197 198 lelttrd φxMNx<N+1
200 192 199 gtned φxMNN+1x
201 200 adantr φxMN¬F-1x<Kk=F-1x1N+1x
202 65 ad2antrr φxMN¬F-1x<Kk=F-1x1F-1:MN+11-1MN+1
203 71 ad2antrr φxMN¬F-1x<Kk=F-1x1N+1MN+1
204 f1fveq F-1:MN+11-1MN+1N+1MN+1xMN+1F-1N+1=F-1xN+1=x
205 202 203 174 204 syl12anc φxMN¬F-1x<Kk=F-1x1F-1N+1=F-1xN+1=x
206 205 necon3bid φxMN¬F-1x<Kk=F-1x1F-1N+1F-1xN+1x
207 201 206 mpbird φxMN¬F-1x<Kk=F-1x1F-1N+1F-1x
208 9 neeq1i KF-1xF-1N+1F-1x
209 207 208 sylibr φxMN¬F-1x<Kk=F-1x1KF-1x
210 209 necomd φxMN¬F-1x<Kk=F-1x1F-1xK
211 182 187 189 210 leneltd φxMN¬F-1x<Kk=F-1x1K<F-1x
212 74 ad2antrr φxMN¬F-1x<Kk=F-1x1K
213 zltlem1 KF-1xK<F-1xKF-1x1
214 212 176 213 syl2anc φxMN¬F-1x<Kk=F-1x1K<F-1xKF-1x1
215 211 214 mpbid φxMN¬F-1x<Kk=F-1x1KF-1x1
216 215 171 breqtrrd φxMN¬F-1x<Kk=F-1x1Kk
217 181 182 183 186 216 letrd φxMN¬F-1x<Kk=F-1x1Mk
218 elfzle2 F-1xMN+1F-1xN+1
219 175 218 syl φxMN¬F-1x<Kk=F-1x1F-1xN+1
220 193 ad2antrr φxMN¬F-1x<Kk=F-1x1N
221 1re 1
222 lesubadd F-1x1NF-1x1NF-1xN+1
223 221 222 mp3an2 F-1xNF-1x1NF-1xN+1
224 187 220 223 syl2anc φxMN¬F-1x<Kk=F-1x1F-1x1NF-1xN+1
225 219 224 mpbird φxMN¬F-1x<Kk=F-1x1F-1x1N
226 171 225 eqbrtrd φxMN¬F-1x<Kk=F-1x1kN
227 169 170 179 217 226 elfzd φxMN¬F-1x<Kk=F-1x1kMN
228 182 183 216 lensymd φxMN¬F-1x<Kk=F-1x1¬k<K
229 228 58 syl φxMN¬F-1x<Kk=F-1x1Fifk<Kkk+1=Fk+1
230 171 oveq1d φxMN¬F-1x<Kk=F-1x1k+1=F-1x-1+1
231 176 zcnd φxMN¬F-1x<Kk=F-1x1F-1x
232 npcan F-1x1F-1x-1+1=F-1x
233 231 117 232 sylancl φxMN¬F-1x<Kk=F-1x1F-1x-1+1=F-1x
234 230 233 eqtrd φxMN¬F-1x<Kk=F-1x1k+1=F-1x
235 234 fveq2d φxMN¬F-1x<Kk=F-1x1Fk+1=FF-1x
236 6 ad2antrr φxMN¬F-1x<Kk=F-1x1F:MN+11-1 ontoMN+1
237 236 174 161 syl2anc φxMN¬F-1x<Kk=F-1x1FF-1x=x
238 229 235 237 3eqtrrd φxMN¬F-1x<Kk=F-1x1x=Fifk<Kkk+1
239 227 238 jca φxMN¬F-1x<Kk=F-1x1kMNx=Fifk<Kkk+1
240 239 expr φxMN¬F-1x<Kk=F-1x1kMNx=Fifk<Kkk+1
241 168 240 sylbid φxMN¬F-1x<Kk=ifF-1x<KF-1xF-1x1kMNx=Fifk<Kkk+1
242 166 241 pm2.61dan φxMNk=ifF-1x<KF-1xF-1x1kMNx=Fifk<Kkk+1
243 242 expimpd φxMNk=ifF-1x<KF-1xF-1x1kMNx=Fifk<Kkk+1
244 125 243 impbid φkMNx=Fifk<Kkk+1xMNk=ifF-1x<KF-1xF-1x1
245 8 10 14 244 f1od φJ:MN1-1 ontoMN