Metamath Proof Explorer


Theorem seqf1olem1

Description: Lemma for seqf1o . (Contributed by Mario Carneiro, 26-Feb-2014) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses seqf1o.1 φ x S y S x + ˙ y S
seqf1o.2 φ x C y C x + ˙ y = y + ˙ x
seqf1o.3 φ x S y S z S x + ˙ y + ˙ z = x + ˙ y + ˙ z
seqf1o.4 φ N M
seqf1o.5 φ C S
seqf1olem.5 φ F : M N + 1 1-1 onto M N + 1
seqf1olem.6 φ G : M N + 1 C
seqf1olem.7 J = k M N F if k < K k k + 1
seqf1olem.8 K = F -1 N + 1
Assertion seqf1olem1 φ J : M N 1-1 onto M N

Proof

Step Hyp Ref Expression
1 seqf1o.1 φ x S y S x + ˙ y S
2 seqf1o.2 φ x C y C x + ˙ y = y + ˙ x
3 seqf1o.3 φ x S y S z S x + ˙ y + ˙ z = x + ˙ y + ˙ z
4 seqf1o.4 φ N M
5 seqf1o.5 φ C S
6 seqf1olem.5 φ F : M N + 1 1-1 onto M N + 1
7 seqf1olem.6 φ G : M N + 1 C
8 seqf1olem.7 J = k M N F if k < K k k + 1
9 seqf1olem.8 K = F -1 N + 1
10 fvexd φ k M N F if k < K k k + 1 V
11 fvex F -1 x V
12 ovex F -1 x 1 V
13 11 12 ifex if F -1 x < K F -1 x F -1 x 1 V
14 13 a1i φ x M N if F -1 x < K F -1 x F -1 x 1 V
15 iftrue k < K if k < K k k + 1 = k
16 15 fveq2d k < K F if k < K k k + 1 = F k
17 16 eqeq2d k < K x = F if k < K k k + 1 x = F k
18 17 adantl φ k M N k < K x = F if k < K k k + 1 x = F k
19 simprr φ k M N k < K x = F k x = F k
20 elfzelz k M N k
21 20 zred k M N k
22 21 ad2antlr φ k M N k < K x = F k k
23 simprl φ k M N k < K x = F k k < K
24 22 23 gtned φ k M N k < K x = F k K k
25 f1of F : M N + 1 1-1 onto M N + 1 F : M N + 1 M N + 1
26 6 25 syl φ F : M N + 1 M N + 1
27 26 ad2antrr φ k M N k < K x = F k F : M N + 1 M N + 1
28 fzssp1 M N M N + 1
29 simplr φ k M N k < K x = F k k M N
30 28 29 sseldi φ k M N k < K x = F k k M N + 1
31 27 30 ffvelrnd φ k M N k < K x = F k F k M N + 1
32 elfzp1 N M F k M N + 1 F k M N F k = N + 1
33 4 32 syl φ F k M N + 1 F k M N F k = N + 1
34 33 ad2antrr φ k M N k < K x = F k F k M N + 1 F k M N F k = N + 1
35 31 34 mpbid φ k M N k < K x = F k F k M N F k = N + 1
36 35 ord φ k M N k < K x = F k ¬ F k M N F k = N + 1
37 6 ad2antrr φ k M N k < K x = F k F : M N + 1 1-1 onto M N + 1
38 f1ocnvfv F : M N + 1 1-1 onto M N + 1 k M N + 1 F k = N + 1 F -1 N + 1 = k
39 37 30 38 syl2anc φ k M N k < K x = F k F k = N + 1 F -1 N + 1 = k
40 9 eqeq1i K = k F -1 N + 1 = k
41 39 40 syl6ibr φ k M N k < K x = F k F k = N + 1 K = k
42 36 41 syld φ k M N k < K x = F k ¬ F k M N K = k
43 42 necon1ad φ k M N k < K x = F k K k F k M N
44 24 43 mpd φ k M N k < K x = F k F k M N
45 19 44 eqeltrd φ k M N k < K x = F k x M N
46 19 eqcomd φ k M N k < K x = F k F k = x
47 f1ocnvfv F : M N + 1 1-1 onto M N + 1 k M N + 1 F k = x F -1 x = k
48 37 30 47 syl2anc φ k M N k < K x = F k F k = x F -1 x = k
49 46 48 mpd φ k M N k < K x = F k F -1 x = k
50 49 23 eqbrtrd φ k M N k < K x = F k F -1 x < K
51 iftrue F -1 x < K if F -1 x < K F -1 x F -1 x 1 = F -1 x
52 50 51 syl φ k M N k < K x = F k if F -1 x < K F -1 x F -1 x 1 = F -1 x
53 52 49 eqtr2d φ k M N k < K x = F k k = if F -1 x < K F -1 x F -1 x 1
54 45 53 jca φ k M N k < K x = F k x M N k = if F -1 x < K F -1 x F -1 x 1
55 54 expr φ k M N k < K x = F k x M N k = if F -1 x < K F -1 x F -1 x 1
56 18 55 sylbid φ k M N k < K x = F if k < K k k + 1 x M N k = if F -1 x < K F -1 x F -1 x 1
57 iffalse ¬ k < K if k < K k k + 1 = k + 1
58 57 fveq2d ¬ k < K F if k < K k k + 1 = F k + 1
59 58 eqeq2d ¬ k < K x = F if k < K k k + 1 x = F k + 1
60 59 adantl φ k M N ¬ k < K x = F if k < K k k + 1 x = F k + 1
61 simprr φ k M N ¬ k < K x = F k + 1 x = F k + 1
62 f1ocnv F : M N + 1 1-1 onto M N + 1 F -1 : M N + 1 1-1 onto M N + 1
63 6 62 syl φ F -1 : M N + 1 1-1 onto M N + 1
64 f1of1 F -1 : M N + 1 1-1 onto M N + 1 F -1 : M N + 1 1-1 M N + 1
65 63 64 syl φ F -1 : M N + 1 1-1 M N + 1
66 f1f F -1 : M N + 1 1-1 M N + 1 F -1 : M N + 1 M N + 1
67 65 66 syl φ F -1 : M N + 1 M N + 1
68 peano2uz N M N + 1 M
69 4 68 syl φ N + 1 M
70 eluzfz2 N + 1 M N + 1 M N + 1
71 69 70 syl φ N + 1 M N + 1
72 67 71 ffvelrnd φ F -1 N + 1 M N + 1
73 9 72 eqeltrid φ K M N + 1
74 elfzelz K M N + 1 K
75 73 74 syl φ K
76 75 zred φ K
77 76 ad2antrr φ k M N ¬ k < K x = F k + 1 K
78 21 ad2antlr φ k M N ¬ k < K x = F k + 1 k
79 peano2re k k + 1
80 78 79 syl φ k M N ¬ k < K x = F k + 1 k + 1
81 simprl φ k M N ¬ k < K x = F k + 1 ¬ k < K
82 77 78 81 nltled φ k M N ¬ k < K x = F k + 1 K k
83 78 ltp1d φ k M N ¬ k < K x = F k + 1 k < k + 1
84 77 78 80 82 83 lelttrd φ k M N ¬ k < K x = F k + 1 K < k + 1
85 77 84 ltned φ k M N ¬ k < K x = F k + 1 K k + 1
86 26 ad2antrr φ k M N ¬ k < K x = F k + 1 F : M N + 1 M N + 1
87 fzp1elp1 k M N k + 1 M N + 1
88 87 ad2antlr φ k M N ¬ k < K x = F k + 1 k + 1 M N + 1
89 86 88 ffvelrnd φ k M N ¬ k < K x = F k + 1 F k + 1 M N + 1
90 elfzp1 N M F k + 1 M N + 1 F k + 1 M N F k + 1 = N + 1
91 4 90 syl φ F k + 1 M N + 1 F k + 1 M N F k + 1 = N + 1
92 91 ad2antrr φ k M N ¬ k < K x = F k + 1 F k + 1 M N + 1 F k + 1 M N F k + 1 = N + 1
93 89 92 mpbid φ k M N ¬ k < K x = F k + 1 F k + 1 M N F k + 1 = N + 1
94 93 ord φ k M N ¬ k < K x = F k + 1 ¬ F k + 1 M N F k + 1 = N + 1
95 6 ad2antrr φ k M N ¬ k < K x = F k + 1 F : M N + 1 1-1 onto M N + 1
96 f1ocnvfv F : M N + 1 1-1 onto M N + 1 k + 1 M N + 1 F k + 1 = N + 1 F -1 N + 1 = k + 1
97 95 88 96 syl2anc φ k M N ¬ k < K x = F k + 1 F k + 1 = N + 1 F -1 N + 1 = k + 1
98 9 eqeq1i K = k + 1 F -1 N + 1 = k + 1
99 97 98 syl6ibr φ k M N ¬ k < K x = F k + 1 F k + 1 = N + 1 K = k + 1
100 94 99 syld φ k M N ¬ k < K x = F k + 1 ¬ F k + 1 M N K = k + 1
101 100 necon1ad φ k M N ¬ k < K x = F k + 1 K k + 1 F k + 1 M N
102 85 101 mpd φ k M N ¬ k < K x = F k + 1 F k + 1 M N
103 61 102 eqeltrd φ k M N ¬ k < K x = F k + 1 x M N
104 61 eqcomd φ k M N ¬ k < K x = F k + 1 F k + 1 = x
105 f1ocnvfv F : M N + 1 1-1 onto M N + 1 k + 1 M N + 1 F k + 1 = x F -1 x = k + 1
106 95 88 105 syl2anc φ k M N ¬ k < K x = F k + 1 F k + 1 = x F -1 x = k + 1
107 104 106 mpd φ k M N ¬ k < K x = F k + 1 F -1 x = k + 1
108 107 breq1d φ k M N ¬ k < K x = F k + 1 F -1 x < K k + 1 < K
109 lttr k k + 1 K k < k + 1 k + 1 < K k < K
110 78 80 77 109 syl3anc φ k M N ¬ k < K x = F k + 1 k < k + 1 k + 1 < K k < K
111 83 110 mpand φ k M N ¬ k < K x = F k + 1 k + 1 < K k < K
112 108 111 sylbid φ k M N ¬ k < K x = F k + 1 F -1 x < K k < K
113 81 112 mtod φ k M N ¬ k < K x = F k + 1 ¬ F -1 x < K
114 iffalse ¬ F -1 x < K if F -1 x < K F -1 x F -1 x 1 = F -1 x 1
115 113 114 syl φ k M N ¬ k < K x = F k + 1 if F -1 x < K F -1 x F -1 x 1 = F -1 x 1
116 107 oveq1d φ k M N ¬ k < K x = F k + 1 F -1 x 1 = k + 1 - 1
117 78 recnd φ k M N ¬ k < K x = F k + 1 k
118 ax-1cn 1
119 pncan k 1 k + 1 - 1 = k
120 117 118 119 sylancl φ k M N ¬ k < K x = F k + 1 k + 1 - 1 = k
121 115 116 120 3eqtrrd φ k M N ¬ k < K x = F k + 1 k = if F -1 x < K F -1 x F -1 x 1
122 103 121 jca φ k M N ¬ k < K x = F k + 1 x M N k = if F -1 x < K F -1 x F -1 x 1
123 122 expr φ k M N ¬ k < K x = F k + 1 x M N k = if F -1 x < K F -1 x F -1 x 1
124 60 123 sylbid φ k M N ¬ k < K x = F if k < K k k + 1 x M N k = if F -1 x < K F -1 x F -1 x 1
125 56 124 pm2.61dan φ k M N x = F if k < K k k + 1 x M N k = if F -1 x < K F -1 x F -1 x 1
126 125 expimpd φ k M N x = F if k < K k k + 1 x M N k = if F -1 x < K F -1 x F -1 x 1
127 51 eqeq2d F -1 x < K k = if F -1 x < K F -1 x F -1 x 1 k = F -1 x
128 127 adantl φ x M N F -1 x < K k = if F -1 x < K F -1 x F -1 x 1 k = F -1 x
129 simprr φ x M N F -1 x < K k = F -1 x k = F -1 x
130 67 ad2antrr φ x M N F -1 x < K k = F -1 x F -1 : M N + 1 M N + 1
131 simplr φ x M N F -1 x < K k = F -1 x x M N
132 28 131 sseldi φ x M N F -1 x < K k = F -1 x x M N + 1
133 130 132 ffvelrnd φ x M N F -1 x < K k = F -1 x F -1 x M N + 1
134 129 133 eqeltrd φ x M N F -1 x < K k = F -1 x k M N + 1
135 elfzle1 k M N + 1 M k
136 134 135 syl φ x M N F -1 x < K k = F -1 x M k
137 elfzelz k M N + 1 k
138 134 137 syl φ x M N F -1 x < K k = F -1 x k
139 138 zred φ x M N F -1 x < K k = F -1 x k
140 76 ad2antrr φ x M N F -1 x < K k = F -1 x K
141 eluzelz N M N
142 4 141 syl φ N
143 142 peano2zd φ N + 1
144 143 zred φ N + 1
145 144 ad2antrr φ x M N F -1 x < K k = F -1 x N + 1
146 simprl φ x M N F -1 x < K k = F -1 x F -1 x < K
147 129 146 eqbrtrd φ x M N F -1 x < K k = F -1 x k < K
148 elfzle2 K M N + 1 K N + 1
149 73 148 syl φ K N + 1
150 149 ad2antrr φ x M N F -1 x < K k = F -1 x K N + 1
151 139 140 145 147 150 ltletrd φ x M N F -1 x < K k = F -1 x k < N + 1
152 142 ad2antrr φ x M N F -1 x < K k = F -1 x N
153 zleltp1 k N k N k < N + 1
154 138 152 153 syl2anc φ x M N F -1 x < K k = F -1 x k N k < N + 1
155 151 154 mpbird φ x M N F -1 x < K k = F -1 x k N
156 eluzel2 N M M
157 4 156 syl φ M
158 157 ad2antrr φ x M N F -1 x < K k = F -1 x M
159 elfz k M N k M N M k k N
160 138 158 152 159 syl3anc φ x M N F -1 x < K k = F -1 x k M N M k k N
161 136 155 160 mpbir2and φ x M N F -1 x < K k = F -1 x k M N
162 147 16 syl φ x M N F -1 x < K k = F -1 x F if k < K k k + 1 = F k
163 129 fveq2d φ x M N F -1 x < K k = F -1 x F k = F F -1 x
164 6 ad2antrr φ x M N F -1 x < K k = F -1 x F : M N + 1 1-1 onto M N + 1
165 f1ocnvfv2 F : M N + 1 1-1 onto M N + 1 x M N + 1 F F -1 x = x
166 164 132 165 syl2anc φ x M N F -1 x < K k = F -1 x F F -1 x = x
167 162 163 166 3eqtrrd φ x M N F -1 x < K k = F -1 x x = F if k < K k k + 1
168 161 167 jca φ x M N F -1 x < K k = F -1 x k M N x = F if k < K k k + 1
169 168 expr φ x M N F -1 x < K k = F -1 x k M N x = F if k < K k k + 1
170 128 169 sylbid φ x M N F -1 x < K k = if F -1 x < K F -1 x F -1 x 1 k M N x = F if k < K k k + 1
171 114 eqeq2d ¬ F -1 x < K k = if F -1 x < K F -1 x F -1 x 1 k = F -1 x 1
172 171 adantl φ x M N ¬ F -1 x < K k = if F -1 x < K F -1 x F -1 x 1 k = F -1 x 1
173 157 zred φ M
174 173 ad2antrr φ x M N ¬ F -1 x < K k = F -1 x 1 M
175 76 ad2antrr φ x M N ¬ F -1 x < K k = F -1 x 1 K
176 simprr φ x M N ¬ F -1 x < K k = F -1 x 1 k = F -1 x 1
177 67 ad2antrr φ x M N ¬ F -1 x < K k = F -1 x 1 F -1 : M N + 1 M N + 1
178 simplr φ x M N ¬ F -1 x < K k = F -1 x 1 x M N
179 28 178 sseldi φ x M N ¬ F -1 x < K k = F -1 x 1 x M N + 1
180 177 179 ffvelrnd φ x M N ¬ F -1 x < K k = F -1 x 1 F -1 x M N + 1
181 elfzelz F -1 x M N + 1 F -1 x
182 180 181 syl φ x M N ¬ F -1 x < K k = F -1 x 1 F -1 x
183 peano2zm F -1 x F -1 x 1
184 182 183 syl φ x M N ¬ F -1 x < K k = F -1 x 1 F -1 x 1
185 176 184 eqeltrd φ x M N ¬ F -1 x < K k = F -1 x 1 k
186 185 zred φ x M N ¬ F -1 x < K k = F -1 x 1 k
187 elfzle1 K M N + 1 M K
188 73 187 syl φ M K
189 188 ad2antrr φ x M N ¬ F -1 x < K k = F -1 x 1 M K
190 182 zred φ x M N ¬ F -1 x < K k = F -1 x 1 F -1 x
191 simprl φ x M N ¬ F -1 x < K k = F -1 x 1 ¬ F -1 x < K
192 175 190 191 nltled φ x M N ¬ F -1 x < K k = F -1 x 1 K F -1 x
193 elfzelz x M N x
194 193 adantl φ x M N x
195 194 zred φ x M N x
196 142 zred φ N
197 196 adantr φ x M N N
198 144 adantr φ x M N N + 1
199 elfzle2 x M N x N
200 199 adantl φ x M N x N
201 197 ltp1d φ x M N N < N + 1
202 195 197 198 200 201 lelttrd φ x M N x < N + 1
203 195 202 gtned φ x M N N + 1 x
204 203 adantr φ x M N ¬ F -1 x < K k = F -1 x 1 N + 1 x
205 65 ad2antrr φ x M N ¬ F -1 x < K k = F -1 x 1 F -1 : M N + 1 1-1 M N + 1
206 71 ad2antrr φ x M N ¬ F -1 x < K k = F -1 x 1 N + 1 M N + 1
207 f1fveq F -1 : M N + 1 1-1 M N + 1 N + 1 M N + 1 x M N + 1 F -1 N + 1 = F -1 x N + 1 = x
208 205 206 179 207 syl12anc φ x M N ¬ F -1 x < K k = F -1 x 1 F -1 N + 1 = F -1 x N + 1 = x
209 208 necon3bid φ x M N ¬ F -1 x < K k = F -1 x 1 F -1 N + 1 F -1 x N + 1 x
210 204 209 mpbird φ x M N ¬ F -1 x < K k = F -1 x 1 F -1 N + 1 F -1 x
211 9 neeq1i K F -1 x F -1 N + 1 F -1 x
212 210 211 sylibr φ x M N ¬ F -1 x < K k = F -1 x 1 K F -1 x
213 212 necomd φ x M N ¬ F -1 x < K k = F -1 x 1 F -1 x K
214 175 190 192 213 leneltd φ x M N ¬ F -1 x < K k = F -1 x 1 K < F -1 x
215 75 ad2antrr φ x M N ¬ F -1 x < K k = F -1 x 1 K
216 zltlem1 K F -1 x K < F -1 x K F -1 x 1
217 215 182 216 syl2anc φ x M N ¬ F -1 x < K k = F -1 x 1 K < F -1 x K F -1 x 1
218 214 217 mpbid φ x M N ¬ F -1 x < K k = F -1 x 1 K F -1 x 1
219 218 176 breqtrrd φ x M N ¬ F -1 x < K k = F -1 x 1 K k
220 174 175 186 189 219 letrd φ x M N ¬ F -1 x < K k = F -1 x 1 M k
221 elfzle2 F -1 x M N + 1 F -1 x N + 1
222 180 221 syl φ x M N ¬ F -1 x < K k = F -1 x 1 F -1 x N + 1
223 196 ad2antrr φ x M N ¬ F -1 x < K k = F -1 x 1 N
224 1re 1
225 lesubadd F -1 x 1 N F -1 x 1 N F -1 x N + 1
226 224 225 mp3an2 F -1 x N F -1 x 1 N F -1 x N + 1
227 190 223 226 syl2anc φ x M N ¬ F -1 x < K k = F -1 x 1 F -1 x 1 N F -1 x N + 1
228 222 227 mpbird φ x M N ¬ F -1 x < K k = F -1 x 1 F -1 x 1 N
229 176 228 eqbrtrd φ x M N ¬ F -1 x < K k = F -1 x 1 k N
230 157 ad2antrr φ x M N ¬ F -1 x < K k = F -1 x 1 M
231 142 ad2antrr φ x M N ¬ F -1 x < K k = F -1 x 1 N
232 185 230 231 159 syl3anc φ x M N ¬ F -1 x < K k = F -1 x 1 k M N M k k N
233 220 229 232 mpbir2and φ x M N ¬ F -1 x < K k = F -1 x 1 k M N
234 175 186 219 lensymd φ x M N ¬ F -1 x < K k = F -1 x 1 ¬ k < K
235 234 58 syl φ x M N ¬ F -1 x < K k = F -1 x 1 F if k < K k k + 1 = F k + 1
236 176 oveq1d φ x M N ¬ F -1 x < K k = F -1 x 1 k + 1 = F -1 x - 1 + 1
237 182 zcnd φ x M N ¬ F -1 x < K k = F -1 x 1 F -1 x
238 npcan F -1 x 1 F -1 x - 1 + 1 = F -1 x
239 237 118 238 sylancl φ x M N ¬ F -1 x < K k = F -1 x 1 F -1 x - 1 + 1 = F -1 x
240 236 239 eqtrd φ x M N ¬ F -1 x < K k = F -1 x 1 k + 1 = F -1 x
241 240 fveq2d φ x M N ¬ F -1 x < K k = F -1 x 1 F k + 1 = F F -1 x
242 6 ad2antrr φ x M N ¬ F -1 x < K k = F -1 x 1 F : M N + 1 1-1 onto M N + 1
243 242 179 165 syl2anc φ x M N ¬ F -1 x < K k = F -1 x 1 F F -1 x = x
244 235 241 243 3eqtrrd φ x M N ¬ F -1 x < K k = F -1 x 1 x = F if k < K k k + 1
245 233 244 jca φ x M N ¬ F -1 x < K k = F -1 x 1 k M N x = F if k < K k k + 1
246 245 expr φ x M N ¬ F -1 x < K k = F -1 x 1 k M N x = F if k < K k k + 1
247 172 246 sylbid φ x M N ¬ F -1 x < K k = if F -1 x < K F -1 x F -1 x 1 k M N x = F if k < K k k + 1
248 170 247 pm2.61dan φ x M N k = if F -1 x < K F -1 x F -1 x 1 k M N x = F if k < K k k + 1
249 248 expimpd φ x M N k = if F -1 x < K F -1 x F -1 x 1 k M N x = F if k < K k k + 1
250 126 249 impbid φ k M N x = F if k < K k k + 1 x M N k = if F -1 x < K F -1 x F -1 x 1
251 8 10 14 250 f1od φ J : M N 1-1 onto M N