| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smfinfmpt.n |
|
| 2 |
|
smfinfmpt.x |
|
| 3 |
|
smfinfmpt.y |
|
| 4 |
|
smfinfmpt.m |
|
| 5 |
|
smfinfmpt.z |
|
| 6 |
|
smfinfmpt.s |
|
| 7 |
|
smfinfmpt.b |
|
| 8 |
|
smfinfmpt.f |
|
| 9 |
|
smfinfmpt.d |
|
| 10 |
|
smfinfmpt.g |
|
| 11 |
|
eqidd |
|
| 12 |
11 8
|
fvmpt2d |
|
| 13 |
12
|
dmeqd |
|
| 14 |
|
nfcv |
|
| 15 |
14
|
nfcri |
|
| 16 |
2 15
|
nfan |
|
| 17 |
|
eqid |
|
| 18 |
7
|
3expa |
|
| 19 |
16 17 18
|
dmmptdf |
|
| 20 |
13 19
|
eqtr2d |
|
| 21 |
1 20
|
iineq2d |
|
| 22 |
2 21
|
rabeqd |
|
| 23 |
|
nfv |
|
| 24 |
3 23
|
nfan |
|
| 25 |
|
nfii1 |
|
| 26 |
25
|
nfcri |
|
| 27 |
1 26
|
nfan |
|
| 28 |
|
simpll |
|
| 29 |
|
simpr |
|
| 30 |
|
eliinid |
|
| 31 |
30
|
adantll |
|
| 32 |
13 19
|
eqtrd |
|
| 33 |
32
|
adantlr |
|
| 34 |
31 33
|
eleqtrd |
|
| 35 |
12
|
fveq1d |
|
| 36 |
35
|
3adant3 |
|
| 37 |
|
simp3 |
|
| 38 |
|
fvmpt4 |
|
| 39 |
37 7 38
|
syl2anc |
|
| 40 |
36 39
|
eqtr2d |
|
| 41 |
40
|
breq2d |
|
| 42 |
28 29 34 41
|
syl3anc |
|
| 43 |
27 42
|
ralbida |
|
| 44 |
24 43
|
rexbid |
|
| 45 |
2 44
|
rabbida |
|
| 46 |
22 45
|
eqtrd |
|
| 47 |
9 46
|
eqtrid |
|
| 48 |
|
nfcv |
|
| 49 |
|
nfra1 |
|
| 50 |
48 49
|
nfrexw |
|
| 51 |
|
nfii1 |
|
| 52 |
50 51
|
nfrabw |
|
| 53 |
9 52
|
nfcxfr |
|
| 54 |
53
|
nfcri |
|
| 55 |
1 54
|
nfan |
|
| 56 |
|
simpll |
|
| 57 |
|
simpr |
|
| 58 |
|
rabidim1 |
|
| 59 |
58 9
|
eleq2s |
|
| 60 |
|
eliinid |
|
| 61 |
59 60
|
sylan |
|
| 62 |
61
|
adantll |
|
| 63 |
56 57 62 40
|
syl3anc |
|
| 64 |
55 63
|
mpteq2da |
|
| 65 |
64
|
rneqd |
|
| 66 |
65
|
infeq1d |
|
| 67 |
2 47 66
|
mpteq12da |
|
| 68 |
10 67
|
eqtrid |
|
| 69 |
|
nfmpt1 |
|
| 70 |
|
nfmpt1 |
|
| 71 |
14 70
|
nfmpt |
|
| 72 |
1 8
|
fmptd2f |
|
| 73 |
|
eqid |
|
| 74 |
|
eqid |
|
| 75 |
69 71 4 5 6 72 73 74
|
smfinf |
|
| 76 |
68 75
|
eqeltrd |
|