Metamath Proof Explorer


Theorem smflimsuplem2

Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of Fremlin1 p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses smflimsuplem2.p m φ
smflimsuplem2.m φ M
smflimsuplem2.z Z = M
smflimsuplem2.s φ S SAlg
smflimsuplem2.f φ F : Z SMblFn S
smflimsuplem2.e E = n Z x m n dom F m | sup ran m n F m x * <
smflimsuplem2.h H = n Z x E n sup ran m n F m x * <
smflimsuplem2.n φ n Z
smflimsuplem2.r φ lim sup m Z F m X
smflimsuplem2.x φ X m n dom F m
Assertion smflimsuplem2 φ X dom H n

Proof

Step Hyp Ref Expression
1 smflimsuplem2.p m φ
2 smflimsuplem2.m φ M
3 smflimsuplem2.z Z = M
4 smflimsuplem2.s φ S SAlg
5 smflimsuplem2.f φ F : Z SMblFn S
6 smflimsuplem2.e E = n Z x m n dom F m | sup ran m n F m x * <
7 smflimsuplem2.h H = n Z x E n sup ran m n F m x * <
8 smflimsuplem2.n φ n Z
9 smflimsuplem2.r φ lim sup m Z F m X
10 smflimsuplem2.x φ X m n dom F m
11 eqid n = n
12 8 3 eleqtrdi φ n M
13 uzss n M n M
14 12 13 syl φ n M
15 14 3 sseqtrrdi φ n Z
16 15 adantr φ m n n Z
17 simpr φ m n m n
18 16 17 sseldd φ m n m Z
19 4 adantr φ m Z S SAlg
20 5 ffvelrnda φ m Z F m SMblFn S
21 eqid dom F m = dom F m
22 19 20 21 smff φ m Z F m : dom F m
23 18 22 syldan φ m n F m : dom F m
24 iinss2 m n m n dom F m dom F m
25 24 adantl φ m n m n dom F m dom F m
26 10 adantr φ m n X m n dom F m
27 25 26 sseldd φ m n X dom F m
28 23 27 ffvelrnd φ m n F m X
29 nfmpt1 _ m m n F m X
30 nfmpt1 _ m m M F m X
31 eluzelz n M n
32 12 31 syl φ n
33 eqid m n F m X = m n F m X
34 1 28 33 fmptdf φ m n F m X : n
35 34 ffnd φ m n F m X Fn n
36 nfcv _ m M
37 fvexd φ m M F m X V
38 36 1 37 mptfnd φ m M F m X Fn M
39 33 a1i φ m n F m X = m n F m X
40 fvexd φ m n F m X V
41 39 40 fvmpt2d φ m n m n F m X m = F m X
42 18 3 eleqtrdi φ m n m M
43 eqid m M F m X = m M F m X
44 43 fvmpt2 m M F m X V m M F m X m = F m X
45 42 40 44 syl2anc φ m n m M F m X m = F m X
46 41 45 eqtr4d φ m n m n F m X m = m M F m X m
47 1 29 30 32 35 2 38 32 46 limsupequz φ lim sup m n F m X = lim sup m M F m X
48 3 eqcomi M = Z
49 48 mpteq1i m M F m X = m Z F m X
50 49 fveq2i lim sup m M F m X = lim sup m Z F m X
51 50 a1i φ lim sup m M F m X = lim sup m Z F m X
52 47 51 eqtrd φ lim sup m n F m X = lim sup m Z F m X
53 9 renepnfd φ lim sup m Z F m X +∞
54 52 53 eqnetrd φ lim sup m n F m X +∞
55 1 11 28 54 limsupubuzmpt φ y m n F m X y
56 uzid n n n
57 ne0i n n n
58 32 56 57 3syl φ n
59 1 58 28 supxrre3rnmpt φ sup ran m n F m X * < y m n F m X y
60 55 59 mpbird φ sup ran m n F m X * <
61 10 60 jca φ X m n dom F m sup ran m n F m X * <
62 fveq2 x = y F m x = F m y
63 62 mpteq2dv x = y m n F m x = m n F m y
64 63 rneqd x = y ran m n F m x = ran m n F m y
65 64 supeq1d x = y sup ran m n F m x * < = sup ran m n F m y * <
66 65 eleq1d x = y sup ran m n F m x * < sup ran m n F m y * <
67 66 cbvrabv x m n dom F m | sup ran m n F m x * < = y m n dom F m | sup ran m n F m y * <
68 67 eleq2i X x m n dom F m | sup ran m n F m x * < X y m n dom F m | sup ran m n F m y * <
69 fveq2 y = X F m y = F m X
70 69 mpteq2dv y = X m n F m y = m n F m X
71 70 rneqd y = X ran m n F m y = ran m n F m X
72 71 supeq1d y = X sup ran m n F m y * < = sup ran m n F m X * <
73 72 eleq1d y = X sup ran m n F m y * < sup ran m n F m X * <
74 73 elrab X y m n dom F m | sup ran m n F m y * < X m n dom F m sup ran m n F m X * <
75 68 74 bitri X x m n dom F m | sup ran m n F m x * < X m n dom F m sup ran m n F m X * <
76 61 75 sylibr φ X x m n dom F m | sup ran m n F m x * <
77 id φ φ
78 7 a1i φ H = n Z x E n sup ran m n F m x * <
79 nfcv _ x Z
80 nfrab1 _ x x m n dom F m | sup ran m n F m x * <
81 79 80 nfmpt _ x n Z x m n dom F m | sup ran m n F m x * <
82 6 81 nfcxfr _ x E
83 nfcv _ x n
84 82 83 nffv _ x E n
85 fvex E n V
86 84 85 mptexf x E n sup ran m n F m x * < V
87 86 a1i φ n Z x E n sup ran m n F m x * < V
88 78 87 fvmpt2d φ n Z H n = x E n sup ran m n F m x * <
89 77 8 88 syl2anc φ H n = x E n sup ran m n F m x * <
90 89 dmeqd φ dom H n = dom x E n sup ran m n F m x * <
91 nfcv _ y E n
92 nfcv _ y sup ran m n F m x * <
93 nfcv _ x sup ran m n F m y * <
94 84 91 92 93 65 cbvmptf x E n sup ran m n F m x * < = y E n sup ran m n F m y * <
95 xrltso < Or *
96 95 supex sup ran m n F m y * < V
97 96 a1i φ y E n sup ran m n F m y * < V
98 94 97 dmmptd φ dom x E n sup ran m n F m x * < = E n
99 eqid x m n dom F m | sup ran m n F m x * < = x m n dom F m | sup ran m n F m x * <
100 fvex F m V
101 100 dmex dom F m V
102 101 rgenw m n dom F m V
103 102 a1i φ m n dom F m V
104 58 103 iinexd φ m n dom F m V
105 99 104 rabexd φ x m n dom F m | sup ran m n F m x * < V
106 6 fvmpt2 n Z x m n dom F m | sup ran m n F m x * < V E n = x m n dom F m | sup ran m n F m x * <
107 8 105 106 syl2anc φ E n = x m n dom F m | sup ran m n F m x * <
108 90 98 107 3eqtrrd φ x m n dom F m | sup ran m n F m x * < = dom H n
109 76 108 eleqtrd φ X dom H n