| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem1.1 |
|
| 2 |
|
stoweidlem1.2 |
|
| 3 |
|
stoweidlem1.3 |
|
| 4 |
|
stoweidlem1.5 |
|
| 5 |
|
stoweidlem1.6 |
|
| 6 |
|
stoweidlem1.7 |
|
| 7 |
|
stoweidlem1.8 |
|
| 8 |
|
1re |
|
| 9 |
8
|
a1i |
|
| 10 |
4
|
rpred |
|
| 11 |
1
|
nnnn0d |
|
| 12 |
10 11
|
reexpcld |
|
| 13 |
9 12
|
resubcld |
|
| 14 |
2
|
nnnn0d |
|
| 15 |
14 11
|
nn0expcld |
|
| 16 |
13 15
|
reexpcld |
|
| 17 |
|
2nn0 |
|
| 18 |
17
|
a1i |
|
| 19 |
18 11
|
nn0mulcld |
|
| 20 |
10 19
|
reexpcld |
|
| 21 |
9 20
|
resubcld |
|
| 22 |
21 15
|
reexpcld |
|
| 23 |
2
|
nnred |
|
| 24 |
23 10
|
remulcld |
|
| 25 |
24 11
|
reexpcld |
|
| 26 |
2
|
nncnd |
|
| 27 |
4
|
rpcnd |
|
| 28 |
2
|
nnne0d |
|
| 29 |
4
|
rpne0d |
|
| 30 |
26 27 28 29
|
mulne0d |
|
| 31 |
26 27
|
mulcld |
|
| 32 |
|
expne0 |
|
| 33 |
31 1 32
|
syl2anc |
|
| 34 |
30 33
|
mpbird |
|
| 35 |
22 25 34
|
redivcld |
|
| 36 |
3
|
rpred |
|
| 37 |
23 36
|
remulcld |
|
| 38 |
37 11
|
reexpcld |
|
| 39 |
3
|
rpcnd |
|
| 40 |
3
|
rpne0d |
|
| 41 |
26 39 28 40
|
mulne0d |
|
| 42 |
26 39
|
mulcld |
|
| 43 |
|
expne0 |
|
| 44 |
42 1 43
|
syl2anc |
|
| 45 |
41 44
|
mpbird |
|
| 46 |
9 38 45
|
redivcld |
|
| 47 |
23 11
|
reexpcld |
|
| 48 |
47 12
|
remulcld |
|
| 49 |
9 48
|
readdcld |
|
| 50 |
16 49
|
remulcld |
|
| 51 |
50 25 34
|
redivcld |
|
| 52 |
9 12
|
readdcld |
|
| 53 |
52 15
|
reexpcld |
|
| 54 |
16 53
|
remulcld |
|
| 55 |
54 25 34
|
redivcld |
|
| 56 |
49 25 34
|
redivcld |
|
| 57 |
|
exple1 |
|
| 58 |
10 5 6 11 57
|
syl31anc |
|
| 59 |
9 12
|
subge0d |
|
| 60 |
58 59
|
mpbird |
|
| 61 |
13 15 60
|
expge0d |
|
| 62 |
31 11
|
expcld |
|
| 63 |
62 34
|
dividd |
|
| 64 |
62
|
addlidd |
|
| 65 |
|
0red |
|
| 66 |
|
0le1 |
|
| 67 |
66
|
a1i |
|
| 68 |
65 9 25 67
|
leadd1dd |
|
| 69 |
64 68
|
eqbrtrrd |
|
| 70 |
9 25
|
readdcld |
|
| 71 |
1
|
nnzd |
|
| 72 |
2
|
nngt0d |
|
| 73 |
4
|
rpgt0d |
|
| 74 |
23 10 72 73
|
mulgt0d |
|
| 75 |
|
expgt0 |
|
| 76 |
24 71 74 75
|
syl3anc |
|
| 77 |
|
lediv1 |
|
| 78 |
25 70 25 76 77
|
syl112anc |
|
| 79 |
69 78
|
mpbid |
|
| 80 |
63 79
|
eqbrtrrd |
|
| 81 |
26 27 11
|
mulexpd |
|
| 82 |
81
|
oveq2d |
|
| 83 |
82
|
oveq1d |
|
| 84 |
80 83
|
breqtrd |
|
| 85 |
16 56 61 84
|
lemulge11d |
|
| 86 |
|
1cnd |
|
| 87 |
27 11
|
expcld |
|
| 88 |
86 87
|
subcld |
|
| 89 |
88 15
|
expcld |
|
| 90 |
26 11
|
expcld |
|
| 91 |
90 87
|
mulcld |
|
| 92 |
86 91
|
addcld |
|
| 93 |
89 92 62 34
|
divassd |
|
| 94 |
85 93
|
breqtrrd |
|
| 95 |
90 87
|
mulcomd |
|
| 96 |
95
|
oveq2d |
|
| 97 |
9
|
renegcld |
|
| 98 |
|
le0neg2 |
|
| 99 |
8 98
|
ax-mp |
|
| 100 |
66 99
|
mpbi |
|
| 101 |
100
|
a1i |
|
| 102 |
10 11 5
|
expge0d |
|
| 103 |
97 65 12 101 102
|
letrd |
|
| 104 |
|
bernneq |
|
| 105 |
12 15 103 104
|
syl3anc |
|
| 106 |
96 105
|
eqbrtrd |
|
| 107 |
49 53 16 61 106
|
lemul2ad |
|
| 108 |
|
lediv1 |
|
| 109 |
50 54 25 76 108
|
syl112anc |
|
| 110 |
107 109
|
mpbid |
|
| 111 |
16 51 55 94 110
|
letrd |
|
| 112 |
86 87
|
addcld |
|
| 113 |
88 112
|
mulcomd |
|
| 114 |
113
|
oveq1d |
|
| 115 |
88 112 15
|
mulexpd |
|
| 116 |
|
subsq |
|
| 117 |
86 87 116
|
syl2anc |
|
| 118 |
|
sq1 |
|
| 119 |
118
|
a1i |
|
| 120 |
27 18 11
|
expmuld |
|
| 121 |
1
|
nncnd |
|
| 122 |
|
2cnd |
|
| 123 |
121 122
|
mulcomd |
|
| 124 |
123
|
oveq2d |
|
| 125 |
120 124
|
eqtr3d |
|
| 126 |
119 125
|
oveq12d |
|
| 127 |
117 126
|
eqtr3d |
|
| 128 |
127
|
oveq1d |
|
| 129 |
114 115 128
|
3eqtr3d |
|
| 130 |
129
|
oveq1d |
|
| 131 |
111 130
|
breqtrd |
|
| 132 |
22 9
|
jca |
|
| 133 |
|
exple1 |
|
| 134 |
10 5 6 19 133
|
syl31anc |
|
| 135 |
9 20
|
subge0d |
|
| 136 |
134 135
|
mpbird |
|
| 137 |
21 15 136
|
expge0d |
|
| 138 |
|
1m1e0 |
|
| 139 |
10 19 5
|
expge0d |
|
| 140 |
138 139
|
eqbrtrid |
|
| 141 |
9 9 20 140
|
subled |
|
| 142 |
|
exple1 |
|
| 143 |
21 136 141 15 142
|
syl31anc |
|
| 144 |
132 137 143
|
jca32 |
|
| 145 |
38 25
|
jca |
|
| 146 |
3
|
rpgt0d |
|
| 147 |
23 36 72 146
|
mulgt0d |
|
| 148 |
|
expgt0 |
|
| 149 |
37 71 147 148
|
syl3anc |
|
| 150 |
65 23 72
|
ltled |
|
| 151 |
65 36 146
|
ltled |
|
| 152 |
23 36 150 151
|
mulge0d |
|
| 153 |
36 10 23 150 7
|
lemul2ad |
|
| 154 |
|
leexp1a |
|
| 155 |
37 24 11 152 153 154
|
syl32anc |
|
| 156 |
149 155
|
jca |
|
| 157 |
|
lediv12a |
|
| 158 |
144 145 156 157
|
syl12anc |
|
| 159 |
16 35 46 131 158
|
letrd |
|