Metamath Proof Explorer


Theorem sumdchr2

Description: Lemma for sumdchr . (Contributed by Mario Carneiro, 28-Apr-2016)

Ref Expression
Hypotheses sumdchr.g G=DChrN
sumdchr.d D=BaseG
sumdchr2.z Z=/N
sumdchr2.1 1˙=1Z
sumdchr2.b B=BaseZ
sumdchr2.n φN
sumdchr2.x φAB
Assertion sumdchr2 φxDxA=ifA=1˙D0

Proof

Step Hyp Ref Expression
1 sumdchr.g G=DChrN
2 sumdchr.d D=BaseG
3 sumdchr2.z Z=/N
4 sumdchr2.1 1˙=1Z
5 sumdchr2.b B=BaseZ
6 sumdchr2.n φN
7 sumdchr2.x φAB
8 eqeq2 D=ifA=1˙D0xDxA=DxDxA=ifA=1˙D0
9 eqeq2 0=ifA=1˙D0xDxA=0xDxA=ifA=1˙D0
10 fveq2 A=1˙xA=x1˙
11 1 3 2 dchrmhm DmulGrpZMndHommulGrpfld
12 simpr φxDxD
13 11 12 sselid φxDxmulGrpZMndHommulGrpfld
14 eqid mulGrpZ=mulGrpZ
15 14 4 ringidval 1˙=0mulGrpZ
16 eqid mulGrpfld=mulGrpfld
17 cnfld1 1=1fld
18 16 17 ringidval 1=0mulGrpfld
19 15 18 mhm0 xmulGrpZMndHommulGrpfldx1˙=1
20 13 19 syl φxDx1˙=1
21 10 20 sylan9eqr φxDA=1˙xA=1
22 21 an32s φA=1˙xDxA=1
23 22 sumeq2dv φA=1˙xDxA=xD1
24 1 2 dchrfi NDFin
25 6 24 syl φDFin
26 ax-1cn 1
27 fsumconst DFin1xD1=D1
28 25 26 27 sylancl φxD1=D1
29 hashcl DFinD0
30 6 24 29 3syl φD0
31 30 nn0cnd φD
32 31 mulridd φD1=D
33 28 32 eqtrd φxD1=D
34 33 adantr φA=1˙xD1=D
35 23 34 eqtrd φA=1˙xDxA=D
36 df-ne A1˙¬A=1˙
37 6 adantr φA1˙N
38 simpr φA1˙A1˙
39 7 adantr φA1˙AB
40 1 3 2 5 4 37 38 39 dchrpt φA1˙yDyA1
41 37 adantr φA1˙yDyA1N
42 41 24 syl φA1˙yDyA1DFin
43 simpr φA1˙yDyA1xDxD
44 1 3 2 5 43 dchrf φA1˙yDyA1xDx:B
45 39 adantr φA1˙yDyA1AB
46 45 adantr φA1˙yDyA1xDAB
47 44 46 ffvelcdmd φA1˙yDyA1xDxA
48 42 47 fsumcl φA1˙yDyA1xDxA
49 0cnd φA1˙yDyA10
50 simprl φA1˙yDyA1yD
51 1 3 2 5 50 dchrf φA1˙yDyA1y:B
52 51 45 ffvelcdmd φA1˙yDyA1yA
53 subcl yA1yA1
54 52 26 53 sylancl φA1˙yDyA1yA1
55 simprr φA1˙yDyA1yA1
56 subeq0 yA1yA1=0yA=1
57 52 26 56 sylancl φA1˙yDyA1yA1=0yA=1
58 57 necon3bid φA1˙yDyA1yA10yA1
59 55 58 mpbird φA1˙yDyA1yA10
60 oveq2 z=xy+Gz=y+Gx
61 60 fveq1d z=xy+GzA=y+GxA
62 61 cbvsumv zDy+GzA=xDy+GxA
63 eqid +G=+G
64 50 adantr φA1˙yDyA1xDyD
65 1 3 2 63 64 43 dchrmul φA1˙yDyA1xDy+Gx=y×fx
66 65 fveq1d φA1˙yDyA1xDy+GxA=y×fxA
67 51 adantr φA1˙yDyA1xDy:B
68 67 ffnd φA1˙yDyA1xDyFnB
69 44 ffnd φA1˙yDyA1xDxFnB
70 5 fvexi BV
71 70 a1i φA1˙yDyA1xDBV
72 fnfvof yFnBxFnBBVABy×fxA=yAxA
73 68 69 71 46 72 syl22anc φA1˙yDyA1xDy×fxA=yAxA
74 66 73 eqtrd φA1˙yDyA1xDy+GxA=yAxA
75 74 sumeq2dv φA1˙yDyA1xDy+GxA=xDyAxA
76 62 75 eqtrid φA1˙yDyA1zDy+GzA=xDyAxA
77 fveq1 x=y+GzxA=y+GzA
78 1 dchrabl NGAbel
79 ablgrp GAbelGGrp
80 41 78 79 3syl φA1˙yDyA1GGrp
81 eqid aDbDa+Gb=aDbDa+Gb
82 81 2 63 grplactf1o GGrpyDaDbDa+Gby:D1-1 ontoD
83 80 50 82 syl2anc φA1˙yDyA1aDbDa+Gby:D1-1 ontoD
84 81 2 grplactval yDzDaDbDa+Gbyz=y+Gz
85 50 84 sylan φA1˙yDyA1zDaDbDa+Gbyz=y+Gz
86 77 42 83 85 47 fsumf1o φA1˙yDyA1xDxA=zDy+GzA
87 42 52 47 fsummulc2 φA1˙yDyA1yAxDxA=xDyAxA
88 76 86 87 3eqtr4rd φA1˙yDyA1yAxDxA=xDxA
89 48 mullidd φA1˙yDyA11xDxA=xDxA
90 88 89 oveq12d φA1˙yDyA1yAxDxA1xDxA=xDxAxDxA
91 48 subidd φA1˙yDyA1xDxAxDxA=0
92 90 91 eqtrd φA1˙yDyA1yAxDxA1xDxA=0
93 26 a1i φA1˙yDyA11
94 52 93 48 subdird φA1˙yDyA1yA1xDxA=yAxDxA1xDxA
95 54 mul01d φA1˙yDyA1yA10=0
96 92 94 95 3eqtr4d φA1˙yDyA1yA1xDxA=yA10
97 48 49 54 59 96 mulcanad φA1˙yDyA1xDxA=0
98 40 97 rexlimddv φA1˙xDxA=0
99 36 98 sylan2br φ¬A=1˙xDxA=0
100 8 9 35 99 ifbothda φxDxA=ifA=1˙D0