Description: If the subspace sum of two Hilbert lattice elements is closed, then the elements are a dual modular pair. Remark in MaedaMaeda p. 139. (Contributed by NM, 12-Jul-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sumdmdi.1 | |
|
sumdmdi.2 | |
||
Assertion | sumdmdii | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sumdmdi.1 | |
|
2 | sumdmdi.2 | |
|
3 | ineq2 | |
|
4 | 3 | adantr | |
5 | elin | |
|
6 | 1 2 | chseli | |
7 | ssel2 | |
|
8 | chsh | |
|
9 | shsubcl | |
|
10 | 9 | 3exp | |
11 | 8 10 | syl | |
12 | 7 11 | syl7 | |
13 | 12 | exp4a | |
14 | 13 | com23 | |
15 | 14 | imp41 | |
16 | 15 | adantlr | |
17 | 16 | adantr | |
18 | chel | |
|
19 | 18 | adantlr | |
20 | 1 | cheli | |
21 | 2 | cheli | |
22 | hvsubadd | |
|
23 | ax-hvcom | |
|
24 | 23 | eqeq1d | |
25 | eqcom | |
|
26 | 24 25 | bitrdi | |
27 | 26 | 3adant1 | |
28 | 22 27 | bitrd | |
29 | 28 | 3com23 | |
30 | 19 20 21 29 | syl3an | |
31 | 30 | 3expa | |
32 | eleq1 | |
|
33 | 31 32 | syl6bir | |
34 | 33 | imp | |
35 | 17 34 | mpbid | |
36 | simpr | |
|
37 | 35 36 | jca | |
38 | 37 | exp31 | |
39 | 38 | reximdvai | |
40 | r19.42v | |
|
41 | 39 40 | imbitrdi | |
42 | 41 | reximdva | |
43 | elin | |
|
44 | ancom | |
|
45 | 43 44 | bitri | |
46 | 45 | anbi1i | |
47 | anass | |
|
48 | 46 47 | bitri | |
49 | 48 | rexbii2 | |
50 | 42 49 | syl6ibr | |
51 | 1 | chshii | |
52 | shincl | |
|
53 | 8 51 52 | sylancl | |
54 | 53 | ad2antrr | |
55 | 2 | chshii | |
56 | shsel | |
|
57 | 54 55 56 | sylancl | |
58 | 50 57 | sylibrd | |
59 | 6 58 | biimtrid | |
60 | 59 | expimpd | |
61 | 5 60 | biimtrid | |
62 | 61 | ssrdv | |
63 | 62 | adantl | |
64 | 4 63 | eqsstrrd | |
65 | chincl | |
|
66 | 1 65 | mpan2 | |
67 | chslej | |
|
68 | 66 2 67 | sylancl | |
69 | 68 | ad2antrl | |
70 | 64 69 | sstrd | |
71 | 70 | exp32 | |
72 | 71 | ralrimiv | |
73 | dmdbr2 | |
|
74 | 1 2 73 | mp2an | |
75 | 72 74 | sylibr | |