Metamath Proof Explorer


Theorem sumdmdii

Description: If the subspace sum of two Hilbert lattice elements is closed, then the elements are a dual modular pair. Remark in MaedaMaeda p. 139. (Contributed by NM, 12-Jul-2004) (New usage is discouraged.)

Ref Expression
Hypotheses sumdmdi.1 AC
sumdmdi.2 BC
Assertion sumdmdii A+B=ABA𝑀*B

Proof

Step Hyp Ref Expression
1 sumdmdi.1 AC
2 sumdmdi.2 BC
3 ineq2 A+B=ABxA+B=xAB
4 3 adantr A+B=ABxCBxxA+B=xAB
5 elin yxA+ByxyA+B
6 1 2 chseli yA+BzAwBy=z+w
7 ssel2 BxwBwx
8 chsh xCxS
9 shsubcl xSyxwxy-wx
10 9 3exp xSyxwxy-wx
11 8 10 syl xCyxwxy-wx
12 7 11 syl7 xCyxBxwBy-wx
13 12 exp4a xCyxBxwBy-wx
14 13 com23 xCBxyxwBy-wx
15 14 imp41 xCBxyxwBy-wx
16 15 adantlr xCBxyxzAwBy-wx
17 16 adantr xCBxyxzAwBy=z+wy-wx
18 chel xCyxy
19 18 adantlr xCBxyxy
20 1 cheli zAz
21 2 cheli wBw
22 hvsubadd ywzy-w=zw+z=y
23 ax-hvcom wzw+z=z+w
24 23 eqeq1d wzw+z=yz+w=y
25 eqcom z+w=yy=z+w
26 24 25 bitrdi wzw+z=yy=z+w
27 26 3adant1 ywzw+z=yy=z+w
28 22 27 bitrd ywzy-w=zy=z+w
29 28 3com23 yzwy-w=zy=z+w
30 19 20 21 29 syl3an xCBxyxzAwBy-w=zy=z+w
31 30 3expa xCBxyxzAwBy-w=zy=z+w
32 eleq1 y-w=zy-wxzx
33 31 32 syl6bir xCBxyxzAwBy=z+wy-wxzx
34 33 imp xCBxyxzAwBy=z+wy-wxzx
35 17 34 mpbid xCBxyxzAwBy=z+wzx
36 simpr xCBxyxzAwBy=z+wy=z+w
37 35 36 jca xCBxyxzAwBy=z+wzxy=z+w
38 37 exp31 xCBxyxzAwBy=z+wzxy=z+w
39 38 reximdvai xCBxyxzAwBy=z+wwBzxy=z+w
40 r19.42v wBzxy=z+wzxwBy=z+w
41 39 40 imbitrdi xCBxyxzAwBy=z+wzxwBy=z+w
42 41 reximdva xCBxyxzAwBy=z+wzAzxwBy=z+w
43 elin zxAzxzA
44 ancom zxzAzAzx
45 43 44 bitri zxAzAzx
46 45 anbi1i zxAwBy=z+wzAzxwBy=z+w
47 anass zAzxwBy=z+wzAzxwBy=z+w
48 46 47 bitri zxAwBy=z+wzAzxwBy=z+w
49 48 rexbii2 zxAwBy=z+wzAzxwBy=z+w
50 42 49 syl6ibr xCBxyxzAwBy=z+wzxAwBy=z+w
51 1 chshii AS
52 shincl xSASxAS
53 8 51 52 sylancl xCxAS
54 53 ad2antrr xCBxyxxAS
55 2 chshii BS
56 shsel xASBSyxA+BzxAwBy=z+w
57 54 55 56 sylancl xCBxyxyxA+BzxAwBy=z+w
58 50 57 sylibrd xCBxyxzAwBy=z+wyxA+B
59 6 58 biimtrid xCBxyxyA+ByxA+B
60 59 expimpd xCBxyxyA+ByxA+B
61 5 60 biimtrid xCBxyxA+ByxA+B
62 61 ssrdv xCBxxA+BxA+B
63 62 adantl A+B=ABxCBxxA+BxA+B
64 4 63 eqsstrrd A+B=ABxCBxxABxA+B
65 chincl xCACxAC
66 1 65 mpan2 xCxAC
67 chslej xACBCxA+BxAB
68 66 2 67 sylancl xCxA+BxAB
69 68 ad2antrl A+B=ABxCBxxA+BxAB
70 64 69 sstrd A+B=ABxCBxxABxAB
71 70 exp32 A+B=ABxCBxxABxAB
72 71 ralrimiv A+B=ABxCBxxABxAB
73 dmdbr2 ACBCA𝑀*BxCBxxABxAB
74 1 2 73 mp2an A𝑀*BxCBxxABxAB
75 72 74 sylibr A+B=ABA𝑀*B