Metamath Proof Explorer


Theorem tsmsadd

Description: The sum of two infinite group sums. (Contributed by Mario Carneiro, 19-Sep-2015) (Proof shortened by AV, 24-Jul-2019)

Ref Expression
Hypotheses tsmsadd.b B=BaseG
tsmsadd.p +˙=+G
tsmsadd.1 φGCMnd
tsmsadd.2 φGTopMnd
tsmsadd.a φAV
tsmsadd.f φF:AB
tsmsadd.h φH:AB
tsmsadd.x φXGtsumsF
tsmsadd.y φYGtsumsH
Assertion tsmsadd φX+˙YGtsumsF+˙fH

Proof

Step Hyp Ref Expression
1 tsmsadd.b B=BaseG
2 tsmsadd.p +˙=+G
3 tsmsadd.1 φGCMnd
4 tsmsadd.2 φGTopMnd
5 tsmsadd.a φAV
6 tsmsadd.f φF:AB
7 tsmsadd.h φH:AB
8 tsmsadd.x φXGtsumsF
9 tsmsadd.y φYGtsumsH
10 tmdtps GTopMndGTopSp
11 4 10 syl φGTopSp
12 1 3 11 5 6 tsmscl φGtsumsFB
13 12 8 sseldd φXB
14 1 3 11 5 7 tsmscl φGtsumsHB
15 14 9 sseldd φYB
16 eqid +𝑓G=+𝑓G
17 1 2 16 plusfval XBYBX+𝑓GY=X+˙Y
18 13 15 17 syl2anc φX+𝑓GY=X+˙Y
19 eqid TopOpenG=TopOpenG
20 1 19 istps GTopSpTopOpenGTopOnB
21 11 20 sylib φTopOpenGTopOnB
22 eqid 𝒫AFin=𝒫AFin
23 eqid y𝒫AFinz𝒫AFin|yz=y𝒫AFinz𝒫AFin|yz
24 eqid rany𝒫AFinz𝒫AFin|yz=rany𝒫AFinz𝒫AFin|yz
25 22 23 24 5 tsmsfbas φrany𝒫AFinz𝒫AFin|yzfBas𝒫AFin
26 fgcl rany𝒫AFinz𝒫AFin|yzfBas𝒫AFin𝒫AFinfilGenrany𝒫AFinz𝒫AFin|yzFil𝒫AFin
27 25 26 syl φ𝒫AFinfilGenrany𝒫AFinz𝒫AFin|yzFil𝒫AFin
28 1 22 3 5 6 tsmslem1 φz𝒫AFinGFzB
29 1 22 3 5 7 tsmslem1 φz𝒫AFinGHzB
30 1 19 22 24 3 5 6 tsmsval φGtsumsF=TopOpenGfLimf𝒫AFinfilGenrany𝒫AFinz𝒫AFin|yzz𝒫AFinGFz
31 8 30 eleqtrd φXTopOpenGfLimf𝒫AFinfilGenrany𝒫AFinz𝒫AFin|yzz𝒫AFinGFz
32 1 19 22 24 3 5 7 tsmsval φGtsumsH=TopOpenGfLimf𝒫AFinfilGenrany𝒫AFinz𝒫AFin|yzz𝒫AFinGHz
33 9 32 eleqtrd φYTopOpenGfLimf𝒫AFinfilGenrany𝒫AFinz𝒫AFin|yzz𝒫AFinGHz
34 19 16 tmdcn GTopMnd+𝑓GTopOpenG×tTopOpenGCnTopOpenG
35 4 34 syl φ+𝑓GTopOpenG×tTopOpenGCnTopOpenG
36 13 15 opelxpd φXYB×B
37 txtopon TopOpenGTopOnBTopOpenGTopOnBTopOpenG×tTopOpenGTopOnB×B
38 21 21 37 syl2anc φTopOpenG×tTopOpenGTopOnB×B
39 toponuni TopOpenG×tTopOpenGTopOnB×BB×B=TopOpenG×tTopOpenG
40 38 39 syl φB×B=TopOpenG×tTopOpenG
41 36 40 eleqtrd φXYTopOpenG×tTopOpenG
42 eqid TopOpenG×tTopOpenG=TopOpenG×tTopOpenG
43 42 cncnpi +𝑓GTopOpenG×tTopOpenGCnTopOpenGXYTopOpenG×tTopOpenG+𝑓GTopOpenG×tTopOpenGCnPTopOpenGXY
44 35 41 43 syl2anc φ+𝑓GTopOpenG×tTopOpenGCnPTopOpenGXY
45 21 21 27 28 29 31 33 44 flfcnp2 φX+𝑓GYTopOpenGfLimf𝒫AFinfilGenrany𝒫AFinz𝒫AFin|yzz𝒫AFinGFz+𝑓GGHz
46 18 45 eqeltrrd φX+˙YTopOpenGfLimf𝒫AFinfilGenrany𝒫AFinz𝒫AFin|yzz𝒫AFinGFz+𝑓GGHz
47 cmnmnd GCMndGMnd
48 3 47 syl φGMnd
49 1 2 mndcl GMndxByBx+˙yB
50 49 3expb GMndxByBx+˙yB
51 48 50 sylan φxByBx+˙yB
52 inidm AA=A
53 51 6 7 5 5 52 off φF+˙fH:AB
54 1 19 22 24 3 5 53 tsmsval φGtsumsF+˙fH=TopOpenGfLimf𝒫AFinfilGenrany𝒫AFinz𝒫AFin|yzz𝒫AFinGF+˙fHz
55 eqid 0G=0G
56 3 adantr φz𝒫AFinGCMnd
57 elinel2 z𝒫AFinzFin
58 57 adantl φz𝒫AFinzFin
59 elfpw z𝒫AFinzAzFin
60 59 simplbi z𝒫AFinzA
61 fssres F:ABzAFz:zB
62 6 60 61 syl2an φz𝒫AFinFz:zB
63 fssres H:ABzAHz:zB
64 7 60 63 syl2an φz𝒫AFinHz:zB
65 fvexd φz𝒫AFin0GV
66 62 58 65 fdmfifsupp φz𝒫AFinfinSupp0GFz
67 64 58 65 fdmfifsupp φz𝒫AFinfinSupp0GHz
68 1 55 2 56 58 62 64 66 67 gsumadd φz𝒫AFinGFz+˙fHz=GFz+˙GHz
69 6 5 fexd φFV
70 7 5 fexd φHV
71 offres FVHVF+˙fHz=Fz+˙fHz
72 69 70 71 syl2anc φF+˙fHz=Fz+˙fHz
73 72 adantr φz𝒫AFinF+˙fHz=Fz+˙fHz
74 73 oveq2d φz𝒫AFinGF+˙fHz=GFz+˙fHz
75 1 2 16 plusfval GFzBGHzBGFz+𝑓GGHz=GFz+˙GHz
76 28 29 75 syl2anc φz𝒫AFinGFz+𝑓GGHz=GFz+˙GHz
77 68 74 76 3eqtr4d φz𝒫AFinGF+˙fHz=GFz+𝑓GGHz
78 77 mpteq2dva φz𝒫AFinGF+˙fHz=z𝒫AFinGFz+𝑓GGHz
79 78 fveq2d φTopOpenGfLimf𝒫AFinfilGenrany𝒫AFinz𝒫AFin|yzz𝒫AFinGF+˙fHz=TopOpenGfLimf𝒫AFinfilGenrany𝒫AFinz𝒫AFin|yzz𝒫AFinGFz+𝑓GGHz
80 54 79 eqtrd φGtsumsF+˙fH=TopOpenGfLimf𝒫AFinfilGenrany𝒫AFinz𝒫AFin|yzz𝒫AFinGFz+𝑓GGHz
81 46 80 eleqtrrd φX+˙YGtsumsF+˙fH