Metamath Proof Explorer


Theorem wallispi2lem2

Description: Two expressions are proven to be equal, and this is used to complete the proof of the second version of Wallis' formula for π . (Contributed by Glauco Siliprandi, 30-Jun-2017)

Ref Expression
Assertion wallispi2lem2 Nseq1×k2k42k2k12N=24 NN!42 N!2

Proof

Step Hyp Ref Expression
1 fveq2 x=1seq1×k2k42k2k12x=seq1×k2k42k2k121
2 oveq2 x=14x=41
3 2 oveq2d x=124x=241
4 fveq2 x=1x!=1!
5 4 oveq1d x=1x!4=1!4
6 3 5 oveq12d x=124xx!4=2411!4
7 oveq2 x=12x=21
8 7 fveq2d x=12x!=21!
9 8 oveq1d x=12x!2=21!2
10 6 9 oveq12d x=124xx!42x!2=2411!421!2
11 1 10 eqeq12d x=1seq1×k2k42k2k12x=24xx!42x!2seq1×k2k42k2k121=2411!421!2
12 fveq2 x=yseq1×k2k42k2k12x=seq1×k2k42k2k12y
13 oveq2 x=y4x=4y
14 13 oveq2d x=y24x=24y
15 fveq2 x=yx!=y!
16 15 oveq1d x=yx!4=y!4
17 14 16 oveq12d x=y24xx!4=24yy!4
18 oveq2 x=y2x=2y
19 18 fveq2d x=y2x!=2y!
20 19 oveq1d x=y2x!2=2y!2
21 17 20 oveq12d x=y24xx!42x!2=24yy!42y!2
22 12 21 eqeq12d x=yseq1×k2k42k2k12x=24xx!42x!2seq1×k2k42k2k12y=24yy!42y!2
23 fveq2 x=y+1seq1×k2k42k2k12x=seq1×k2k42k2k12y+1
24 oveq2 x=y+14x=4y+1
25 24 oveq2d x=y+124x=24y+1
26 fveq2 x=y+1x!=y+1!
27 26 oveq1d x=y+1x!4=y+1!4
28 25 27 oveq12d x=y+124xx!4=24y+1y+1!4
29 oveq2 x=y+12x=2y+1
30 29 fveq2d x=y+12x!=2y+1!
31 30 oveq1d x=y+12x!2=2y+1!2
32 28 31 oveq12d x=y+124xx!42x!2=24y+1y+1!42y+1!2
33 23 32 eqeq12d x=y+1seq1×k2k42k2k12x=24xx!42x!2seq1×k2k42k2k12y+1=24y+1y+1!42y+1!2
34 fveq2 x=Nseq1×k2k42k2k12x=seq1×k2k42k2k12N
35 oveq2 x=N4x=4 N
36 35 oveq2d x=N24x=24 N
37 fveq2 x=Nx!=N!
38 37 oveq1d x=Nx!4=N!4
39 36 38 oveq12d x=N24xx!4=24 NN!4
40 oveq2 x=N2x=2 N
41 40 fveq2d x=N2x!=2 N!
42 41 oveq1d x=N2x!2=2 N!2
43 39 42 oveq12d x=N24xx!42x!2=24 NN!42 N!2
44 34 43 eqeq12d x=Nseq1×k2k42k2k12x=24xx!42x!2seq1×k2k42k2k12N=24 NN!42 N!2
45 1z 1
46 seq1 1seq1×k2k42k2k121=k2k42k2k121
47 45 46 ax-mp seq1×k2k42k2k121=k2k42k2k121
48 1nn 1
49 oveq2 k=12k=21
50 49 oveq1d k=12k4=214
51 49 oveq1d k=12k1=211
52 49 51 oveq12d k=12k2k1=21211
53 52 oveq1d k=12k2k12=212112
54 50 53 oveq12d k=12k42k2k12=214212112
55 eqid k2k42k2k12=k2k42k2k12
56 ovex 214212112V
57 54 55 56 fvmpt 1k2k42k2k121=214212112
58 48 57 ax-mp k2k42k2k121=214212112
59 2t1e2 21=2
60 59 oveq1i 214=24
61 2exp4 24=16
62 1nn0 10
63 6nn0 60
64 0nn0 00
65 1t1e1 11=1
66 65 oveq1i 11+0=1+0
67 1p0e1 1+0=1
68 66 67 eqtri 11+0=1
69 6cn 6
70 69 mulridi 61=6
71 63 dec0h 6=06
72 70 71 eqtri 61=06
73 62 62 63 61 63 64 68 72 decmul1c 241=16
74 61 73 eqtr4i 24=241
75 2nn0 20
76 2t2e4 22=4
77 sq1 12=1
78 62 75 76 77 65 numexp2x 14=1
79 78 eqcomi 1=14
80 79 oveq2i 241=2414
81 4cn 4
82 81 mulridi 41=4
83 82 eqcomi 4=41
84 83 oveq2i 24=241
85 fac1 1!=1
86 85 eqcomi 1=1!
87 86 oveq1i 14=1!4
88 84 87 oveq12i 2414=2411!4
89 74 80 88 3eqtri 24=2411!4
90 60 89 eqtri 214=2411!4
91 59 oveq1i 211=21
92 2m1e1 21=1
93 91 92 eqtri 211=1
94 93 oveq2i 21211=211
95 59 oveq1i 211=21
96 95 59 eqtri 211=2
97 59 fveq2i 21!=2!
98 fac2 2!=2
99 97 98 eqtri 21!=2
100 99 eqcomi 2=21!
101 94 96 100 3eqtri 21211=21!
102 101 oveq1i 212112=21!2
103 90 102 oveq12i 214212112=2411!421!2
104 47 58 103 3eqtri seq1×k2k42k2k121=2411!421!2
105 elnnuz yy1
106 105 biimpi yy1
107 106 adantr yseq1×k2k42k2k12y=24yy!42y!2y1
108 seqp1 y1seq1×k2k42k2k12y+1=seq1×k2k42k2k12yk2k42k2k12y+1
109 107 108 syl yseq1×k2k42k2k12y=24yy!42y!2seq1×k2k42k2k12y+1=seq1×k2k42k2k12yk2k42k2k12y+1
110 simpr yseq1×k2k42k2k12y=24yy!42y!2seq1×k2k42k2k12y=24yy!42y!2
111 110 oveq1d yseq1×k2k42k2k12y=24yy!42y!2seq1×k2k42k2k12yk2k42k2k12y+1=24yy!42y!2k2k42k2k12y+1
112 eqidd yk2k42k2k12=k2k42k2k12
113 oveq2 k=y+12k=2y+1
114 113 oveq1d k=y+12k4=2y+14
115 113 oveq1d k=y+12k1=2y+11
116 113 115 oveq12d k=y+12k2k1=2y+12y+11
117 116 oveq1d k=y+12k2k12=2y+12y+112
118 114 117 oveq12d k=y+12k42k2k12=2y+142y+12y+112
119 118 adantl yk=y+12k42k2k12=2y+142y+12y+112
120 peano2nn yy+1
121 2cnd y2
122 nncn yy
123 1cnd y1
124 122 123 addcld yy+1
125 121 124 mulcld y2y+1
126 4nn0 40
127 126 a1i y40
128 125 127 expcld y2y+14
129 125 123 subcld y2y+11
130 125 129 mulcld y2y+12y+11
131 130 sqcld y2y+12y+112
132 2pos 0<2
133 132 a1i y0<2
134 133 gt0ne0d y20
135 120 nnne0d yy+10
136 121 124 134 135 mulne0d y2y+10
137 1red y1
138 2re 2
139 138 a1i y2
140 nnre yy
141 140 137 readdcld yy+1
142 1lt2 1<2
143 142 a1i y1<2
144 nnrp yy+
145 137 144 ltaddrp2d y1<y+1
146 139 141 143 145 mulgt1d y1<2y+1
147 137 146 gtned y2y+11
148 125 123 147 subne0d y2y+110
149 125 129 136 148 mulne0d y2y+12y+110
150 2z 2
151 150 a1i y2
152 130 149 151 expne0d y2y+12y+1120
153 128 131 152 divcld y2y+142y+12y+112
154 112 119 120 153 fvmptd yk2k42k2k12y+1=2y+142y+12y+112
155 154 oveq2d y24yy!42y!2k2k42k2k12y+1=24yy!42y!22y+142y+12y+112
156 nnnn0 yy0
157 127 156 nn0mulcld y4y0
158 121 157 expcld y24y
159 faccl y0y!
160 nncn y!y!
161 156 159 160 3syl yy!
162 161 127 expcld yy!4
163 158 162 mulcld y24yy!4
164 75 a1i y20
165 164 156 nn0mulcld y2y0
166 faccl 2y02y!
167 nncn 2y!2y!
168 165 166 167 3syl y2y!
169 168 sqcld y2y!2
170 165 166 syl y2y!
171 170 nnne0d y2y!0
172 168 171 151 expne0d y2y!20
173 163 169 128 131 172 152 divmuldivd y24yy!42y!22y+142y+12y+112=24yy!42y+142y!22y+12y+112
174 121 124 127 mulexpd y2y+14=24y+14
175 174 oveq2d y24yy!42y+14=24yy!424y+14
176 121 127 expcld y24
177 124 127 expcld yy+14
178 158 162 176 177 mul4d y24yy!424y+14=24y24y!4y+14
179 161 124 127 mulexpd yy!y+14=y!4y+14
180 179 eqcomd yy!4y+14=y!y+14
181 180 oveq2d y24y24y!4y+14=24y24y!y+14
182 175 178 181 3eqtrd y24yy!42y+14=24y24y!y+14
183 121 122 mulcld y2y
184 183 123 addcld y2y+1
185 125 184 mulcomd y2y+12y+1=2y+12y+1
186 185 oveq2d y2y!2y+12y+1=2y!2y+12y+1
187 121 122 123 adddid y2y+1=2y+21
188 187 oveq1d y2y+11=2y+21-1
189 59 121 eqeltrid y21
190 183 189 123 addsubassd y2y+21-1=2y+21-1
191 59 a1i y21=2
192 191 oveq1d y211=21
193 192 92 eqtrdi y211=1
194 193 oveq2d y2y+21-1=2y+1
195 188 190 194 3eqtrd y2y+11=2y+1
196 195 oveq2d y2y+12y+11=2y+12y+1
197 196 oveq2d y2y!2y+12y+11=2y!2y+12y+1
198 168 184 125 mulassd y2y!2y+12y+1=2y!2y+12y+1
199 186 197 198 3eqtr4d y2y!2y+12y+11=2y!2y+12y+1
200 199 oveq1d y2y!2y+12y+112=2y!2y+12y+12
201 168 130 164 mulexpd y2y!2y+12y+112=2y!22y+12y+112
202 df-2 2=1+1
203 202 a1i y2=1+1
204 203 oveq2d y2y+2=2y+1+1
205 183 123 123 addassd y2y+1+1=2y+1+1
206 204 205 eqtr4d y2y+2=2y+1+1
207 206 fveq2d y2y+2!=2y+1+1!
208 62 a1i y10
209 165 208 nn0addcld y2y+10
210 facp1 2y+102y+1+1!=2y+1!2y+1+1
211 209 210 syl y2y+1+1!=2y+1!2y+1+1
212 facp1 2y02y+1!=2y!2y+1
213 165 212 syl y2y+1!=2y!2y+1
214 203 eqcomd y1+1=2
215 214 oveq2d y2y+1+1=2y+2
216 214 202 59 3eqtr4g y2=21
217 216 oveq2d y2y+2=2y+21
218 217 187 eqtr4d y2y+2=2y+1
219 205 215 218 3eqtrd y2y+1+1=2y+1
220 213 219 oveq12d y2y+1!2y+1+1=2y!2y+12y+1
221 207 211 220 3eqtrrd y2y!2y+12y+1=2y+2!
222 221 oveq1d y2y!2y+12y+12=2y+2!2
223 200 201 222 3eqtr3d y2y!22y+12y+112=2y+2!2
224 182 223 oveq12d y24yy!42y+142y!22y+12y+112=24y24y!y+142y+2!2
225 173 224 eqtrd y24yy!42y!22y+142y+12y+112=24y24y!y+142y+2!2
226 83 a1i y4=41
227 226 oveq2d y4y+4=4y+41
228 227 oveq2d y24y+4=24y+41
229 121 127 157 expaddd y24y+4=24y24
230 81 a1i y4
231 230 122 123 adddid y4y+1=4y+41
232 231 eqcomd y4y+41=4y+1
233 232 oveq2d y24y+41=24y+1
234 228 229 233 3eqtr3d y24y24=24y+1
235 facp1 y0y+1!=y!y+1
236 156 235 syl yy+1!=y!y+1
237 236 eqcomd yy!y+1=y+1!
238 237 oveq1d yy!y+14=y+1!4
239 234 238 oveq12d y24y24y!y+14=24y+1y+1!4
240 218 fveq2d y2y+2!=2y+1!
241 240 oveq1d y2y+2!2=2y+1!2
242 239 241 oveq12d y24y24y!y+142y+2!2=24y+1y+1!42y+1!2
243 155 225 242 3eqtrd y24yy!42y!2k2k42k2k12y+1=24y+1y+1!42y+1!2
244 243 adantr yseq1×k2k42k2k12y=24yy!42y!224yy!42y!2k2k42k2k12y+1=24y+1y+1!42y+1!2
245 109 111 244 3eqtrd yseq1×k2k42k2k12y=24yy!42y!2seq1×k2k42k2k12y+1=24y+1y+1!42y+1!2
246 245 ex yseq1×k2k42k2k12y=24yy!42y!2seq1×k2k42k2k12y+1=24y+1y+1!42y+1!2
247 11 22 33 44 104 246 nnind Nseq1×k2k42k2k12N=24 NN!42 N!2