Metamath Proof Explorer


Theorem weniso

Description: A set-like well-ordering has no nontrivial automorphisms. (Contributed by Stefan O'Rear, 16-Nov-2014) (Revised by Mario Carneiro, 25-Jun-2015)

Ref Expression
Assertion weniso RWeARSeAFIsomR,RAAF=IA

Proof

Step Hyp Ref Expression
1 rabn0 aA|¬Fa=aaA¬Fa=a
2 rexnal aA¬Fa=a¬aAFa=a
3 1 2 bitri aA|¬Fa=a¬aAFa=a
4 simpl1 RWeARSeAFIsomR,RAAaA|¬Fa=aRWeA
5 simpl2 RWeARSeAFIsomR,RAAaA|¬Fa=aRSeA
6 ssrab2 aA|¬Fa=aA
7 6 a1i RWeARSeAFIsomR,RAAaA|¬Fa=aaA|¬Fa=aA
8 simpr RWeARSeAFIsomR,RAAaA|¬Fa=aaA|¬Fa=a
9 wereu2 RWeARSeAaA|¬Fa=aAaA|¬Fa=a∃!baA|¬Fa=acaA|¬Fa=a¬cRb
10 4 5 7 8 9 syl22anc RWeARSeAFIsomR,RAAaA|¬Fa=a∃!baA|¬Fa=acaA|¬Fa=a¬cRb
11 reurex ∃!baA|¬Fa=acaA|¬Fa=a¬cRbbaA|¬Fa=acaA|¬Fa=a¬cRb
12 10 11 syl RWeARSeAFIsomR,RAAaA|¬Fa=abaA|¬Fa=acaA|¬Fa=a¬cRb
13 12 ex RWeARSeAFIsomR,RAAaA|¬Fa=abaA|¬Fa=acaA|¬Fa=a¬cRb
14 fveq2 a=bFa=Fb
15 id a=ba=b
16 14 15 eqeq12d a=bFa=aFb=b
17 16 notbid a=b¬Fa=a¬Fb=b
18 17 elrab baA|¬Fa=abA¬Fb=b
19 fveq2 a=cFa=Fc
20 id a=ca=c
21 19 20 eqeq12d a=cFa=aFc=c
22 21 notbid a=c¬Fa=a¬Fc=c
23 22 ralrab caA|¬Fa=a¬cRbcA¬Fc=c¬cRb
24 con34b cRbFc=c¬Fc=c¬cRb
25 24 bicomi ¬Fc=c¬cRbcRbFc=c
26 25 ralbii cA¬Fc=c¬cRbcAcRbFc=c
27 23 26 bitri caA|¬Fa=a¬cRbcAcRbFc=c
28 simpl3 RWeARSeAFIsomR,RAAbA¬Fb=bFIsomR,RAA
29 isof1o FIsomR,RAAF:A1-1 ontoA
30 28 29 syl RWeARSeAFIsomR,RAAbA¬Fb=bF:A1-1 ontoA
31 f1of F:A1-1 ontoAF:AA
32 30 31 syl RWeARSeAFIsomR,RAAbA¬Fb=bF:AA
33 simprl RWeARSeAFIsomR,RAAbA¬Fb=bbA
34 32 33 ffvelcdmd RWeARSeAFIsomR,RAAbA¬Fb=bFbA
35 breq1 c=FbcRbFbRb
36 fveq2 c=FbFc=FFb
37 id c=Fbc=Fb
38 36 37 eqeq12d c=FbFc=cFFb=Fb
39 35 38 imbi12d c=FbcRbFc=cFbRbFFb=Fb
40 39 rspcv FbAcAcRbFc=cFbRbFFb=Fb
41 34 40 syl RWeARSeAFIsomR,RAAbA¬Fb=bcAcRbFc=cFbRbFFb=Fb
42 41 com23 RWeARSeAFIsomR,RAAbA¬Fb=bFbRbcAcRbFc=cFFb=Fb
43 42 imp RWeARSeAFIsomR,RAAbA¬Fb=bFbRbcAcRbFc=cFFb=Fb
44 f1of1 F:A1-1 ontoAF:A1-1A
45 30 44 syl RWeARSeAFIsomR,RAAbA¬Fb=bF:A1-1A
46 f1fveq F:A1-1AFbAbAFFb=FbFb=b
47 45 34 33 46 syl12anc RWeARSeAFIsomR,RAAbA¬Fb=bFFb=FbFb=b
48 pm2.21 ¬Fb=bFb=baAFa=a
49 48 ad2antll RWeARSeAFIsomR,RAAbA¬Fb=bFb=baAFa=a
50 47 49 sylbid RWeARSeAFIsomR,RAAbA¬Fb=bFFb=FbaAFa=a
51 50 adantr RWeARSeAFIsomR,RAAbA¬Fb=bFbRbFFb=FbaAFa=a
52 43 51 syld RWeARSeAFIsomR,RAAbA¬Fb=bFbRbcAcRbFc=caAFa=a
53 f1ocnv F:A1-1 ontoAF-1:A1-1 ontoA
54 f1of F-1:A1-1 ontoAF-1:AA
55 30 53 54 3syl RWeARSeAFIsomR,RAAbA¬Fb=bF-1:AA
56 55 33 ffvelcdmd RWeARSeAFIsomR,RAAbA¬Fb=bF-1bA
57 56 adantr RWeARSeAFIsomR,RAAbA¬Fb=bbRFbF-1bA
58 isorel FIsomR,RAAF-1bAbAF-1bRbFF-1bRFb
59 28 56 33 58 syl12anc RWeARSeAFIsomR,RAAbA¬Fb=bF-1bRbFF-1bRFb
60 f1ocnvfv2 F:A1-1 ontoAbAFF-1b=b
61 30 33 60 syl2anc RWeARSeAFIsomR,RAAbA¬Fb=bFF-1b=b
62 61 breq1d RWeARSeAFIsomR,RAAbA¬Fb=bFF-1bRFbbRFb
63 59 62 bitr2d RWeARSeAFIsomR,RAAbA¬Fb=bbRFbF-1bRb
64 63 biimpa RWeARSeAFIsomR,RAAbA¬Fb=bbRFbF-1bRb
65 breq1 c=F-1bcRbF-1bRb
66 fveq2 c=F-1bFc=FF-1b
67 id c=F-1bc=F-1b
68 66 67 eqeq12d c=F-1bFc=cFF-1b=F-1b
69 65 68 imbi12d c=F-1bcRbFc=cF-1bRbFF-1b=F-1b
70 69 rspcv F-1bAcAcRbFc=cF-1bRbFF-1b=F-1b
71 70 com23 F-1bAF-1bRbcAcRbFc=cFF-1b=F-1b
72 57 64 71 sylc RWeARSeAFIsomR,RAAbA¬Fb=bbRFbcAcRbFc=cFF-1b=F-1b
73 simplrr RWeARSeAFIsomR,RAAbA¬Fb=bFF-1b=F-1b¬Fb=b
74 fveq2 FF-1b=F-1bFFF-1b=FF-1b
75 74 adantl RWeARSeAFIsomR,RAAbA¬Fb=bFF-1b=F-1bFFF-1b=FF-1b
76 61 fveq2d RWeARSeAFIsomR,RAAbA¬Fb=bFFF-1b=Fb
77 76 adantr RWeARSeAFIsomR,RAAbA¬Fb=bFF-1b=F-1bFFF-1b=Fb
78 61 adantr RWeARSeAFIsomR,RAAbA¬Fb=bFF-1b=F-1bFF-1b=b
79 75 77 78 3eqtr3d RWeARSeAFIsomR,RAAbA¬Fb=bFF-1b=F-1bFb=b
80 73 79 48 sylc RWeARSeAFIsomR,RAAbA¬Fb=bFF-1b=F-1baAFa=a
81 80 ex RWeARSeAFIsomR,RAAbA¬Fb=bFF-1b=F-1baAFa=a
82 81 adantr RWeARSeAFIsomR,RAAbA¬Fb=bbRFbFF-1b=F-1baAFa=a
83 72 82 syld RWeARSeAFIsomR,RAAbA¬Fb=bbRFbcAcRbFc=caAFa=a
84 simprr RWeARSeAFIsomR,RAAbA¬Fb=b¬Fb=b
85 simpl1 RWeARSeAFIsomR,RAAbA¬Fb=bRWeA
86 weso RWeAROrA
87 85 86 syl RWeARSeAFIsomR,RAAbA¬Fb=bROrA
88 sotrieq ROrAFbAbAFb=b¬FbRbbRFb
89 87 34 33 88 syl12anc RWeARSeAFIsomR,RAAbA¬Fb=bFb=b¬FbRbbRFb
90 89 con2bid RWeARSeAFIsomR,RAAbA¬Fb=bFbRbbRFb¬Fb=b
91 84 90 mpbird RWeARSeAFIsomR,RAAbA¬Fb=bFbRbbRFb
92 52 83 91 mpjaodan RWeARSeAFIsomR,RAAbA¬Fb=bcAcRbFc=caAFa=a
93 27 92 biimtrid RWeARSeAFIsomR,RAAbA¬Fb=bcaA|¬Fa=a¬cRbaAFa=a
94 93 ex RWeARSeAFIsomR,RAAbA¬Fb=bcaA|¬Fa=a¬cRbaAFa=a
95 18 94 biimtrid RWeARSeAFIsomR,RAAbaA|¬Fa=acaA|¬Fa=a¬cRbaAFa=a
96 95 rexlimdv RWeARSeAFIsomR,RAAbaA|¬Fa=acaA|¬Fa=a¬cRbaAFa=a
97 13 96 syld RWeARSeAFIsomR,RAAaA|¬Fa=aaAFa=a
98 3 97 biimtrrid RWeARSeAFIsomR,RAA¬aAFa=aaAFa=a
99 98 pm2.18d RWeARSeAFIsomR,RAAaAFa=a
100 fvresi aAIAa=a
101 100 eqeq2d aAFa=IAaFa=a
102 101 biimprd aAFa=aFa=IAa
103 102 ralimia aAFa=aaAFa=IAa
104 99 103 syl RWeARSeAFIsomR,RAAaAFa=IAa
105 29 3ad2ant3 RWeARSeAFIsomR,RAAF:A1-1 ontoA
106 f1ofn F:A1-1 ontoAFFnA
107 105 106 syl RWeARSeAFIsomR,RAAFFnA
108 fnresi IAFnA
109 108 a1i RWeARSeAFIsomR,RAAIAFnA
110 eqfnfv FFnAIAFnAF=IAaAFa=IAa
111 107 109 110 syl2anc RWeARSeAFIsomR,RAAF=IAaAFa=IAa
112 104 111 mpbird RWeARSeAFIsomR,RAAF=IA