Metamath Proof Explorer


Theorem xpsdsval

Description: Value of the metric in a binary structure product. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Hypotheses xpsds.t ⊒T=R×𝑠S
xpsds.x ⊒X=BaseR
xpsds.y ⊒Y=BaseS
xpsds.1 βŠ’Ο†β†’R∈V
xpsds.2 βŠ’Ο†β†’S∈W
xpsds.p ⊒P=dist⁑T
xpsds.m ⊒M=dist⁑Rβ†ΎXΓ—X
xpsds.n ⊒N=dist⁑Sβ†ΎYΓ—Y
xpsds.3 βŠ’Ο†β†’M∈∞Met⁑X
xpsds.4 βŠ’Ο†β†’N∈∞Met⁑Y
xpsds.a βŠ’Ο†β†’A∈X
xpsds.b βŠ’Ο†β†’B∈Y
xpsds.c βŠ’Ο†β†’C∈X
xpsds.d βŠ’Ο†β†’D∈Y
Assertion xpsdsval βŠ’Ο†β†’ABPCD=supAMCBNDℝ*<

Proof

Step Hyp Ref Expression
1 xpsds.t ⊒T=R×𝑠S
2 xpsds.x ⊒X=BaseR
3 xpsds.y ⊒Y=BaseS
4 xpsds.1 βŠ’Ο†β†’R∈V
5 xpsds.2 βŠ’Ο†β†’S∈W
6 xpsds.p ⊒P=dist⁑T
7 xpsds.m ⊒M=dist⁑Rβ†ΎXΓ—X
8 xpsds.n ⊒N=dist⁑Sβ†ΎYΓ—Y
9 xpsds.3 βŠ’Ο†β†’M∈∞Met⁑X
10 xpsds.4 βŠ’Ο†β†’N∈∞Met⁑Y
11 xpsds.a βŠ’Ο†β†’A∈X
12 xpsds.b βŠ’Ο†β†’B∈Y
13 xpsds.c βŠ’Ο†β†’C∈X
14 xpsds.d βŠ’Ο†β†’D∈Y
15 eqid ⊒x∈X,y∈YβŸΌβˆ…x1π‘œy=x∈X,y∈YβŸΌβˆ…x1π‘œy
16 eqid ⊒Scalar⁑R=Scalar⁑R
17 eqid ⊒Scalar⁑Rβ¨‰π‘ βˆ…R1π‘œS=Scalar⁑Rβ¨‰π‘ βˆ…R1π‘œS
18 1 2 3 4 5 15 16 17 xpsval βŠ’Ο†β†’T=x∈X,y∈YβŸΌβˆ…x1π‘œy-1β€œπ‘ Scalar⁑Rβ¨‰π‘ βˆ…R1π‘œS
19 1 2 3 4 5 15 16 17 xpsrnbas βŠ’Ο†β†’ran⁑x∈X,y∈YβŸΌβˆ…x1π‘œy=BaseScalar⁑Rβ¨‰π‘ βˆ…R1π‘œS
20 15 xpsff1o2 ⊒x∈X,y∈YβŸΌβˆ…x1π‘œy:XΓ—Y⟢1-1 ontoran⁑x∈X,y∈YβŸΌβˆ…x1π‘œy
21 f1ocnv ⊒x∈X,y∈YβŸΌβˆ…x1π‘œy:XΓ—Y⟢1-1 ontoran⁑x∈X,y∈YβŸΌβˆ…x1π‘œyβ†’x∈X,y∈YβŸΌβˆ…x1π‘œy-1:ran⁑x∈X,y∈YβŸΌβˆ…x1π‘œy⟢1-1 ontoXΓ—Y
22 20 21 mp1i βŠ’Ο†β†’x∈X,y∈YβŸΌβˆ…x1π‘œy-1:ran⁑x∈X,y∈YβŸΌβˆ…x1π‘œy⟢1-1 ontoXΓ—Y
23 ovexd βŠ’Ο†β†’Scalar⁑Rβ¨‰π‘ βˆ…R1π‘œS∈V
24 eqid ⊒dist⁑Scalar⁑Rβ¨‰π‘ βˆ…R1π‘œSβ†Ύran⁑x∈X,y∈YβŸΌβˆ…x1π‘œyΓ—ran⁑x∈X,y∈YβŸΌβˆ…x1π‘œy=dist⁑Scalar⁑Rβ¨‰π‘ βˆ…R1π‘œSβ†Ύran⁑x∈X,y∈YβŸΌβˆ…x1π‘œyΓ—ran⁑x∈X,y∈YβŸΌβˆ…x1π‘œy
25 1 2 3 4 5 6 7 8 9 10 xpsxmetlem βŠ’Ο†β†’dist⁑Scalar⁑Rβ¨‰π‘ βˆ…R1π‘œS∈∞Met⁑ran⁑x∈X,y∈YβŸΌβˆ…x1π‘œy
26 ssid ⊒ran⁑x∈X,y∈YβŸΌβˆ…x1π‘œyβŠ†ran⁑x∈X,y∈YβŸΌβˆ…x1π‘œy
27 xmetres2 ⊒dist⁑Scalar⁑Rβ¨‰π‘ βˆ…R1π‘œS∈∞Met⁑ran⁑x∈X,y∈YβŸΌβˆ…x1π‘œy∧ran⁑x∈X,y∈YβŸΌβˆ…x1π‘œyβŠ†ran⁑x∈X,y∈YβŸΌβˆ…x1π‘œyβ†’dist⁑Scalar⁑Rβ¨‰π‘ βˆ…R1π‘œSβ†Ύran⁑x∈X,y∈YβŸΌβˆ…x1π‘œyΓ—ran⁑x∈X,y∈YβŸΌβˆ…x1π‘œy∈∞Met⁑ran⁑x∈X,y∈YβŸΌβˆ…x1π‘œy
28 25 26 27 sylancl βŠ’Ο†β†’dist⁑Scalar⁑Rβ¨‰π‘ βˆ…R1π‘œSβ†Ύran⁑x∈X,y∈YβŸΌβˆ…x1π‘œyΓ—ran⁑x∈X,y∈YβŸΌβˆ…x1π‘œy∈∞Met⁑ran⁑x∈X,y∈YβŸΌβˆ…x1π‘œy
29 df-ov ⊒Ax∈X,y∈YβŸΌβˆ…x1π‘œyB=x∈X,y∈YβŸΌβˆ…x1π‘œy⁑AB
30 15 xpsfval ⊒A∈X∧B∈Yβ†’Ax∈X,y∈YβŸΌβˆ…x1π‘œyB=βˆ…A1π‘œB
31 11 12 30 syl2anc βŠ’Ο†β†’Ax∈X,y∈YβŸΌβˆ…x1π‘œyB=βˆ…A1π‘œB
32 29 31 eqtr3id βŠ’Ο†β†’x∈X,y∈YβŸΌβˆ…x1π‘œy⁑AB=βˆ…A1π‘œB
33 11 12 opelxpd βŠ’Ο†β†’AB∈XΓ—Y
34 f1of ⊒x∈X,y∈YβŸΌβˆ…x1π‘œy:XΓ—Y⟢1-1 ontoran⁑x∈X,y∈YβŸΌβˆ…x1π‘œyβ†’x∈X,y∈YβŸΌβˆ…x1π‘œy:XΓ—Y⟢ran⁑x∈X,y∈YβŸΌβˆ…x1π‘œy
35 20 34 ax-mp ⊒x∈X,y∈YβŸΌβˆ…x1π‘œy:XΓ—Y⟢ran⁑x∈X,y∈YβŸΌβˆ…x1π‘œy
36 35 ffvelcdmi ⊒AB∈XΓ—Yβ†’x∈X,y∈YβŸΌβˆ…x1π‘œy⁑AB∈ran⁑x∈X,y∈YβŸΌβˆ…x1π‘œy
37 33 36 syl βŠ’Ο†β†’x∈X,y∈YβŸΌβˆ…x1π‘œy⁑AB∈ran⁑x∈X,y∈YβŸΌβˆ…x1π‘œy
38 32 37 eqeltrrd βŠ’Ο†β†’βˆ…A1π‘œB∈ran⁑x∈X,y∈YβŸΌβˆ…x1π‘œy
39 df-ov ⊒Cx∈X,y∈YβŸΌβˆ…x1π‘œyD=x∈X,y∈YβŸΌβˆ…x1π‘œy⁑CD
40 15 xpsfval ⊒C∈X∧D∈Yβ†’Cx∈X,y∈YβŸΌβˆ…x1π‘œyD=βˆ…C1π‘œD
41 13 14 40 syl2anc βŠ’Ο†β†’Cx∈X,y∈YβŸΌβˆ…x1π‘œyD=βˆ…C1π‘œD
42 39 41 eqtr3id βŠ’Ο†β†’x∈X,y∈YβŸΌβˆ…x1π‘œy⁑CD=βˆ…C1π‘œD
43 13 14 opelxpd βŠ’Ο†β†’CD∈XΓ—Y
44 35 ffvelcdmi ⊒CD∈XΓ—Yβ†’x∈X,y∈YβŸΌβˆ…x1π‘œy⁑CD∈ran⁑x∈X,y∈YβŸΌβˆ…x1π‘œy
45 43 44 syl βŠ’Ο†β†’x∈X,y∈YβŸΌβˆ…x1π‘œy⁑CD∈ran⁑x∈X,y∈YβŸΌβˆ…x1π‘œy
46 42 45 eqeltrrd βŠ’Ο†β†’βˆ…C1π‘œD∈ran⁑x∈X,y∈YβŸΌβˆ…x1π‘œy
47 18 19 22 23 24 6 28 38 46 imasdsf1o βŠ’Ο†β†’x∈X,y∈YβŸΌβˆ…x1π‘œy-1β‘βˆ…A1π‘œBPx∈X,y∈YβŸΌβˆ…x1π‘œy-1β‘βˆ…C1π‘œD=βˆ…A1π‘œBdist⁑Scalar⁑Rβ¨‰π‘ βˆ…R1π‘œSβ†Ύran⁑x∈X,y∈YβŸΌβˆ…x1π‘œyΓ—ran⁑x∈X,y∈YβŸΌβˆ…x1π‘œyβˆ…C1π‘œD
48 38 46 ovresd βŠ’Ο†β†’βˆ…A1π‘œBdist⁑Scalar⁑Rβ¨‰π‘ βˆ…R1π‘œSβ†Ύran⁑x∈X,y∈YβŸΌβˆ…x1π‘œyΓ—ran⁑x∈X,y∈YβŸΌβˆ…x1π‘œyβˆ…C1π‘œD=βˆ…A1π‘œBdist⁑Scalar⁑Rβ¨‰π‘ βˆ…R1π‘œSβˆ…C1π‘œD
49 47 48 eqtrd βŠ’Ο†β†’x∈X,y∈YβŸΌβˆ…x1π‘œy-1β‘βˆ…A1π‘œBPx∈X,y∈YβŸΌβˆ…x1π‘œy-1β‘βˆ…C1π‘œD=βˆ…A1π‘œBdist⁑Scalar⁑Rβ¨‰π‘ βˆ…R1π‘œSβˆ…C1π‘œD
50 f1ocnvfv ⊒x∈X,y∈YβŸΌβˆ…x1π‘œy:XΓ—Y⟢1-1 ontoran⁑x∈X,y∈YβŸΌβˆ…x1π‘œy∧AB∈XΓ—Yβ†’x∈X,y∈YβŸΌβˆ…x1π‘œy⁑AB=βˆ…A1π‘œBβ†’x∈X,y∈YβŸΌβˆ…x1π‘œy-1β‘βˆ…A1π‘œB=AB
51 20 33 50 sylancr βŠ’Ο†β†’x∈X,y∈YβŸΌβˆ…x1π‘œy⁑AB=βˆ…A1π‘œBβ†’x∈X,y∈YβŸΌβˆ…x1π‘œy-1β‘βˆ…A1π‘œB=AB
52 32 51 mpd βŠ’Ο†β†’x∈X,y∈YβŸΌβˆ…x1π‘œy-1β‘βˆ…A1π‘œB=AB
53 f1ocnvfv ⊒x∈X,y∈YβŸΌβˆ…x1π‘œy:XΓ—Y⟢1-1 ontoran⁑x∈X,y∈YβŸΌβˆ…x1π‘œy∧CD∈XΓ—Yβ†’x∈X,y∈YβŸΌβˆ…x1π‘œy⁑CD=βˆ…C1π‘œDβ†’x∈X,y∈YβŸΌβˆ…x1π‘œy-1β‘βˆ…C1π‘œD=CD
54 20 43 53 sylancr βŠ’Ο†β†’x∈X,y∈YβŸΌβˆ…x1π‘œy⁑CD=βˆ…C1π‘œDβ†’x∈X,y∈YβŸΌβˆ…x1π‘œy-1β‘βˆ…C1π‘œD=CD
55 42 54 mpd βŠ’Ο†β†’x∈X,y∈YβŸΌβˆ…x1π‘œy-1β‘βˆ…C1π‘œD=CD
56 52 55 oveq12d βŠ’Ο†β†’x∈X,y∈YβŸΌβˆ…x1π‘œy-1β‘βˆ…A1π‘œBPx∈X,y∈YβŸΌβˆ…x1π‘œy-1β‘βˆ…C1π‘œD=ABPCD
57 eqid ⊒BaseScalar⁑Rβ¨‰π‘ βˆ…R1π‘œS=BaseScalar⁑Rβ¨‰π‘ βˆ…R1π‘œS
58 fvexd βŠ’Ο†β†’Scalar⁑R∈V
59 2on ⊒2π‘œβˆˆOn
60 59 a1i βŠ’Ο†β†’2π‘œβˆˆOn
61 fnpr2o ⊒R∈V∧S∈Wβ†’βˆ…R1π‘œSFn2π‘œ
62 4 5 61 syl2anc βŠ’Ο†β†’βˆ…R1π‘œSFn2π‘œ
63 38 19 eleqtrd βŠ’Ο†β†’βˆ…A1π‘œB∈BaseScalar⁑Rβ¨‰π‘ βˆ…R1π‘œS
64 46 19 eleqtrd βŠ’Ο†β†’βˆ…C1π‘œD∈BaseScalar⁑Rβ¨‰π‘ βˆ…R1π‘œS
65 eqid ⊒dist⁑Scalar⁑Rβ¨‰π‘ βˆ…R1π‘œS=dist⁑Scalar⁑Rβ¨‰π‘ βˆ…R1π‘œS
66 17 57 58 60 62 63 64 65 prdsdsval βŠ’Ο†β†’βˆ…A1π‘œBdist⁑Scalar⁑Rβ¨‰π‘ βˆ…R1π‘œSβˆ…C1π‘œD=supran⁑k∈2π‘œβŸΌβˆ…A1π‘œB⁑kdistβ‘βˆ…R1π‘œS⁑kβˆ…C1π‘œD⁑kβˆͺ0ℝ*<
67 df2o3 ⊒2π‘œ=βˆ…1π‘œ
68 67 rexeqi βŠ’βˆƒk∈2π‘œx=βˆ…A1π‘œB⁑kdistβ‘βˆ…R1π‘œS⁑kβˆ…C1π‘œD⁑kβ†”βˆƒkβˆˆβˆ…1π‘œx=βˆ…A1π‘œB⁑kdistβ‘βˆ…R1π‘œS⁑kβˆ…C1π‘œD⁑k
69 0ex βŠ’βˆ…βˆˆV
70 1oex ⊒1π‘œβˆˆV
71 2fveq3 ⊒k=βˆ…β†’distβ‘βˆ…R1π‘œS⁑k=distβ‘βˆ…R1π‘œSβ‘βˆ…
72 fveq2 ⊒k=βˆ…β†’βˆ…A1π‘œB⁑k=βˆ…A1π‘œBβ‘βˆ…
73 fveq2 ⊒k=βˆ…β†’βˆ…C1π‘œD⁑k=βˆ…C1π‘œDβ‘βˆ…
74 71 72 73 oveq123d ⊒k=βˆ…β†’βˆ…A1π‘œB⁑kdistβ‘βˆ…R1π‘œS⁑kβˆ…C1π‘œD⁑k=βˆ…A1π‘œBβ‘βˆ…distβ‘βˆ…R1π‘œSβ‘βˆ…βˆ…C1π‘œDβ‘βˆ…
75 74 eqeq2d ⊒k=βˆ…β†’x=βˆ…A1π‘œB⁑kdistβ‘βˆ…R1π‘œS⁑kβˆ…C1π‘œD⁑k↔x=βˆ…A1π‘œBβ‘βˆ…distβ‘βˆ…R1π‘œSβ‘βˆ…βˆ…C1π‘œDβ‘βˆ…
76 2fveq3 ⊒k=1π‘œβ†’distβ‘βˆ…R1π‘œS⁑k=distβ‘βˆ…R1π‘œS⁑1π‘œ
77 fveq2 ⊒k=1π‘œβ†’βˆ…A1π‘œB⁑k=βˆ…A1π‘œB⁑1π‘œ
78 fveq2 ⊒k=1π‘œβ†’βˆ…C1π‘œD⁑k=βˆ…C1π‘œD⁑1π‘œ
79 76 77 78 oveq123d ⊒k=1π‘œβ†’βˆ…A1π‘œB⁑kdistβ‘βˆ…R1π‘œS⁑kβˆ…C1π‘œD⁑k=βˆ…A1π‘œB⁑1π‘œdistβ‘βˆ…R1π‘œS⁑1π‘œβˆ…C1π‘œD⁑1π‘œ
80 79 eqeq2d ⊒k=1π‘œβ†’x=βˆ…A1π‘œB⁑kdistβ‘βˆ…R1π‘œS⁑kβˆ…C1π‘œD⁑k↔x=βˆ…A1π‘œB⁑1π‘œdistβ‘βˆ…R1π‘œS⁑1π‘œβˆ…C1π‘œD⁑1π‘œ
81 69 70 75 80 rexpr βŠ’βˆƒkβˆˆβˆ…1π‘œx=βˆ…A1π‘œB⁑kdistβ‘βˆ…R1π‘œS⁑kβˆ…C1π‘œD⁑k↔x=βˆ…A1π‘œBβ‘βˆ…distβ‘βˆ…R1π‘œSβ‘βˆ…βˆ…C1π‘œDβ‘βˆ…βˆ¨x=βˆ…A1π‘œB⁑1π‘œdistβ‘βˆ…R1π‘œS⁑1π‘œβˆ…C1π‘œD⁑1π‘œ
82 68 81 bitri βŠ’βˆƒk∈2π‘œx=βˆ…A1π‘œB⁑kdistβ‘βˆ…R1π‘œS⁑kβˆ…C1π‘œD⁑k↔x=βˆ…A1π‘œBβ‘βˆ…distβ‘βˆ…R1π‘œSβ‘βˆ…βˆ…C1π‘œDβ‘βˆ…βˆ¨x=βˆ…A1π‘œB⁑1π‘œdistβ‘βˆ…R1π‘œS⁑1π‘œβˆ…C1π‘œD⁑1π‘œ
83 fvpr0o ⊒R∈Vβ†’βˆ…R1π‘œSβ‘βˆ…=R
84 4 83 syl βŠ’Ο†β†’βˆ…R1π‘œSβ‘βˆ…=R
85 84 fveq2d βŠ’Ο†β†’distβ‘βˆ…R1π‘œSβ‘βˆ…=dist⁑R
86 fvpr0o ⊒A∈Xβ†’βˆ…A1π‘œBβ‘βˆ…=A
87 11 86 syl βŠ’Ο†β†’βˆ…A1π‘œBβ‘βˆ…=A
88 fvpr0o ⊒C∈Xβ†’βˆ…C1π‘œDβ‘βˆ…=C
89 13 88 syl βŠ’Ο†β†’βˆ…C1π‘œDβ‘βˆ…=C
90 85 87 89 oveq123d βŠ’Ο†β†’βˆ…A1π‘œBβ‘βˆ…distβ‘βˆ…R1π‘œSβ‘βˆ…βˆ…C1π‘œDβ‘βˆ…=Adist⁑RC
91 7 oveqi ⊒AMC=Adist⁑Rβ†ΎXΓ—XC
92 11 13 ovresd βŠ’Ο†β†’Adist⁑Rβ†ΎXΓ—XC=Adist⁑RC
93 91 92 eqtrid βŠ’Ο†β†’AMC=Adist⁑RC
94 90 93 eqtr4d βŠ’Ο†β†’βˆ…A1π‘œBβ‘βˆ…distβ‘βˆ…R1π‘œSβ‘βˆ…βˆ…C1π‘œDβ‘βˆ…=AMC
95 94 eqeq2d βŠ’Ο†β†’x=βˆ…A1π‘œBβ‘βˆ…distβ‘βˆ…R1π‘œSβ‘βˆ…βˆ…C1π‘œDβ‘βˆ…β†”x=AMC
96 fvpr1o ⊒S∈Wβ†’βˆ…R1π‘œS⁑1π‘œ=S
97 5 96 syl βŠ’Ο†β†’βˆ…R1π‘œS⁑1π‘œ=S
98 97 fveq2d βŠ’Ο†β†’distβ‘βˆ…R1π‘œS⁑1π‘œ=dist⁑S
99 fvpr1o ⊒B∈Yβ†’βˆ…A1π‘œB⁑1π‘œ=B
100 12 99 syl βŠ’Ο†β†’βˆ…A1π‘œB⁑1π‘œ=B
101 fvpr1o ⊒D∈Yβ†’βˆ…C1π‘œD⁑1π‘œ=D
102 14 101 syl βŠ’Ο†β†’βˆ…C1π‘œD⁑1π‘œ=D
103 98 100 102 oveq123d βŠ’Ο†β†’βˆ…A1π‘œB⁑1π‘œdistβ‘βˆ…R1π‘œS⁑1π‘œβˆ…C1π‘œD⁑1π‘œ=Bdist⁑SD
104 8 oveqi ⊒BND=Bdist⁑Sβ†ΎYΓ—YD
105 12 14 ovresd βŠ’Ο†β†’Bdist⁑Sβ†ΎYΓ—YD=Bdist⁑SD
106 104 105 eqtrid βŠ’Ο†β†’BND=Bdist⁑SD
107 103 106 eqtr4d βŠ’Ο†β†’βˆ…A1π‘œB⁑1π‘œdistβ‘βˆ…R1π‘œS⁑1π‘œβˆ…C1π‘œD⁑1π‘œ=BND
108 107 eqeq2d βŠ’Ο†β†’x=βˆ…A1π‘œB⁑1π‘œdistβ‘βˆ…R1π‘œS⁑1π‘œβˆ…C1π‘œD⁑1π‘œβ†”x=BND
109 95 108 orbi12d βŠ’Ο†β†’x=βˆ…A1π‘œBβ‘βˆ…distβ‘βˆ…R1π‘œSβ‘βˆ…βˆ…C1π‘œDβ‘βˆ…βˆ¨x=βˆ…A1π‘œB⁑1π‘œdistβ‘βˆ…R1π‘œS⁑1π‘œβˆ…C1π‘œD⁑1π‘œβ†”x=AMC∨x=BND
110 82 109 bitrid βŠ’Ο†β†’βˆƒk∈2π‘œx=βˆ…A1π‘œB⁑kdistβ‘βˆ…R1π‘œS⁑kβˆ…C1π‘œD⁑k↔x=AMC∨x=BND
111 eqid ⊒k∈2π‘œβŸΌβˆ…A1π‘œB⁑kdistβ‘βˆ…R1π‘œS⁑kβˆ…C1π‘œD⁑k=k∈2π‘œβŸΌβˆ…A1π‘œB⁑kdistβ‘βˆ…R1π‘œS⁑kβˆ…C1π‘œD⁑k
112 111 elrnmpt ⊒x∈Vβ†’x∈ran⁑k∈2π‘œβŸΌβˆ…A1π‘œB⁑kdistβ‘βˆ…R1π‘œS⁑kβˆ…C1π‘œD⁑kβ†”βˆƒk∈2π‘œx=βˆ…A1π‘œB⁑kdistβ‘βˆ…R1π‘œS⁑kβˆ…C1π‘œD⁑k
113 112 elv ⊒x∈ran⁑k∈2π‘œβŸΌβˆ…A1π‘œB⁑kdistβ‘βˆ…R1π‘œS⁑kβˆ…C1π‘œD⁑kβ†”βˆƒk∈2π‘œx=βˆ…A1π‘œB⁑kdistβ‘βˆ…R1π‘œS⁑kβˆ…C1π‘œD⁑k
114 vex ⊒x∈V
115 114 elpr ⊒x∈AMCBND↔x=AMC∨x=BND
116 110 113 115 3bitr4g βŠ’Ο†β†’x∈ran⁑k∈2π‘œβŸΌβˆ…A1π‘œB⁑kdistβ‘βˆ…R1π‘œS⁑kβˆ…C1π‘œD⁑k↔x∈AMCBND
117 116 eqrdv βŠ’Ο†β†’ran⁑k∈2π‘œβŸΌβˆ…A1π‘œB⁑kdistβ‘βˆ…R1π‘œS⁑kβˆ…C1π‘œD⁑k=AMCBND
118 117 uneq1d βŠ’Ο†β†’ran⁑k∈2π‘œβŸΌβˆ…A1π‘œB⁑kdistβ‘βˆ…R1π‘œS⁑kβˆ…C1π‘œD⁑kβˆͺ0=AMCBNDβˆͺ0
119 uncom ⊒AMCBNDβˆͺ0=0βˆͺAMCBND
120 118 119 eqtrdi βŠ’Ο†β†’ran⁑k∈2π‘œβŸΌβˆ…A1π‘œB⁑kdistβ‘βˆ…R1π‘œS⁑kβˆ…C1π‘œD⁑kβˆͺ0=0βˆͺAMCBND
121 120 supeq1d βŠ’Ο†β†’supran⁑k∈2π‘œβŸΌβˆ…A1π‘œB⁑kdistβ‘βˆ…R1π‘œS⁑kβˆ…C1π‘œD⁑kβˆͺ0ℝ*<=sup0βˆͺAMCBNDℝ*<
122 0xr ⊒0βˆˆβ„*
123 122 a1i βŠ’Ο†β†’0βˆˆβ„*
124 123 snssd βŠ’Ο†β†’0βŠ†β„*
125 xmetcl ⊒M∈∞Met⁑X∧A∈X∧C∈Xβ†’AMCβˆˆβ„*
126 9 11 13 125 syl3anc βŠ’Ο†β†’AMCβˆˆβ„*
127 xmetcl ⊒N∈∞Met⁑Y∧B∈Y∧D∈Yβ†’BNDβˆˆβ„*
128 10 12 14 127 syl3anc βŠ’Ο†β†’BNDβˆˆβ„*
129 126 128 prssd βŠ’Ο†β†’AMCBNDβŠ†β„*
130 xrltso ⊒<Orℝ*
131 supsn ⊒<Orℝ*∧0βˆˆβ„*β†’sup0ℝ*<=0
132 130 122 131 mp2an ⊒sup0ℝ*<=0
133 supxrcl ⊒AMCBNDβŠ†β„*β†’supAMCBNDℝ*<βˆˆβ„*
134 129 133 syl βŠ’Ο†β†’supAMCBNDℝ*<βˆˆβ„*
135 xmetge0 ⊒M∈∞Met⁑X∧A∈X∧C∈Xβ†’0≀AMC
136 9 11 13 135 syl3anc βŠ’Ο†β†’0≀AMC
137 ovex ⊒AMC∈V
138 137 prid1 ⊒AMC∈AMCBND
139 supxrub ⊒AMCBNDβŠ†β„*∧AMC∈AMCBNDβ†’AMC≀supAMCBNDℝ*<
140 129 138 139 sylancl βŠ’Ο†β†’AMC≀supAMCBNDℝ*<
141 123 126 134 136 140 xrletrd βŠ’Ο†β†’0≀supAMCBNDℝ*<
142 132 141 eqbrtrid βŠ’Ο†β†’sup0ℝ*<≀supAMCBNDℝ*<
143 supxrun ⊒0βŠ†β„*∧AMCBNDβŠ†β„*∧sup0ℝ*<≀supAMCBNDℝ*<β†’sup0βˆͺAMCBNDℝ*<=supAMCBNDℝ*<
144 124 129 142 143 syl3anc βŠ’Ο†β†’sup0βˆͺAMCBNDℝ*<=supAMCBNDℝ*<
145 66 121 144 3eqtrd βŠ’Ο†β†’βˆ…A1π‘œBdist⁑Scalar⁑Rβ¨‰π‘ βˆ…R1π‘œSβˆ…C1π‘œD=supAMCBNDℝ*<
146 49 56 145 3eqtr3d βŠ’Ο†β†’ABPCD=supAMCBNDℝ*<