Metamath Proof Explorer


Theorem xrsupsslem

Description: Lemma for xrsupss . (Contributed by NM, 25-Oct-2005)

Ref Expression
Assertion xrsupsslem A*A+∞Ax*yA¬x<yy*y<xzAy<z

Proof

Step Hyp Ref Expression
1 raleq A=yA¬x<yy¬x<y
2 rexeq A=zAy<zzy<z
3 2 imbi2d A=y<xzAy<zy<xzy<z
4 3 ralbidv A=y*y<xzAy<zy*y<xzy<z
5 1 4 anbi12d A=yA¬x<yy*y<xzAy<zy¬x<yy*y<xzy<z
6 5 rexbidv A=x*yA¬x<yy*y<xzAy<zx*y¬x<yy*y<xzy<z
7 sup3 AAxyAyxxyA¬x<yyy<xzAy<z
8 rexr xx*
9 8 anim1i xyA¬x<yyy<xzAy<zx*yA¬x<yyy<xzAy<z
10 9 reximi2 xyA¬x<yyy<xzAy<zx*yA¬x<yyy<xzAy<z
11 7 10 syl AAxyAyxx*yA¬x<yyy<xzAy<z
12 elxr y*yy=+∞y=−∞
13 simpr AAx*yy<xzAy<zyy<xzAy<z
14 pnfnlt x*¬+∞<x
15 14 adantr x*y=+∞¬+∞<x
16 breq1 y=+∞y<x+∞<x
17 16 notbid y=+∞¬y<x¬+∞<x
18 17 adantl x*y=+∞¬y<x¬+∞<x
19 15 18 mpbird x*y=+∞¬y<x
20 19 pm2.21d x*y=+∞y<xzAy<z
21 20 ex x*y=+∞y<xzAy<z
22 21 ad2antlr AAx*yy<xzAy<zy=+∞y<xzAy<z
23 ssel AzAz
24 mnflt z−∞<z
25 23 24 syl6 AzA−∞<z
26 25 ancld AzAzA−∞<z
27 26 eximdv AzzAzzA−∞<z
28 n0 AzzA
29 df-rex zA−∞<zzzA−∞<z
30 27 28 29 3imtr4g AAzA−∞<z
31 30 imp AAzA−∞<z
32 31 a1d AA−∞<xzA−∞<z
33 32 ad2antrr AAx*y=−∞−∞<xzA−∞<z
34 breq1 y=−∞y<x−∞<x
35 breq1 y=−∞y<z−∞<z
36 35 rexbidv y=−∞zAy<zzA−∞<z
37 34 36 imbi12d y=−∞y<xzAy<z−∞<xzA−∞<z
38 37 adantl AAx*y=−∞y<xzAy<z−∞<xzA−∞<z
39 33 38 mpbird AAx*y=−∞y<xzAy<z
40 39 ex AAx*y=−∞y<xzAy<z
41 40 adantr AAx*yy<xzAy<zy=−∞y<xzAy<z
42 13 22 41 3jaod AAx*yy<xzAy<zyy=+∞y=−∞y<xzAy<z
43 12 42 biimtrid AAx*yy<xzAy<zy*y<xzAy<z
44 43 ex AAx*yy<xzAy<zy*y<xzAy<z
45 44 ralimdv2 AAx*yy<xzAy<zy*y<xzAy<z
46 45 anim2d AAx*yA¬x<yyy<xzAy<zyA¬x<yy*y<xzAy<z
47 46 reximdva AAx*yA¬x<yyy<xzAy<zx*yA¬x<yy*y<xzAy<z
48 47 3adant3 AAxyAyxx*yA¬x<yyy<xzAy<zx*yA¬x<yy*y<xzAy<z
49 11 48 mpd AAxyAyxx*yA¬x<yy*y<xzAy<z
50 49 3expa AAxyAyxx*yA¬x<yy*y<xzAy<z
51 ralnex x¬yAyx¬xyAyx
52 rexnal yA¬yx¬yAyx
53 ssel2 AyAy
54 letric yxyxxy
55 54 ord yx¬yxxy
56 53 55 sylan AyAx¬yxxy
57 56 an32s AxyA¬yxxy
58 57 reximdva AxyA¬yxyAxy
59 52 58 biimtrrid Ax¬yAyxyAxy
60 59 ralimdva Ax¬yAyxxyAxy
61 60 imp Ax¬yAyxxyAxy
62 51 61 sylan2br A¬xyAyxxyAxy
63 breq2 y=zxyxz
64 63 cbvrexvw yAxyzAxz
65 64 ralbii xyAxyxzAxz
66 62 65 sylib A¬xyAyxxzAxz
67 pnfxr +∞*
68 ssel AyAy
69 rexr yy*
70 pnfnlt y*¬+∞<y
71 69 70 syl y¬+∞<y
72 68 71 syl6 AyA¬+∞<y
73 72 ralrimiv AyA¬+∞<y
74 73 adantr AxzAxzyA¬+∞<y
75 peano2re yy+1
76 breq1 x=y+1xzy+1z
77 76 rexbidv x=y+1zAxzzAy+1z
78 77 rspcva y+1xzAxzzAy+1z
79 78 adantrr y+1xzAxzAzAy+1z
80 79 ancoms xzAxzAy+1zAy+1z
81 75 80 sylan2 xzAxzAyzAy+1z
82 ssel2 AzAz
83 ltp1 yy<y+1
84 83 adantr yzy<y+1
85 75 ancli yyy+1
86 ltletr yy+1zy<y+1y+1zy<z
87 86 3expa yy+1zy<y+1y+1zy<z
88 85 87 sylan yzy<y+1y+1zy<z
89 84 88 mpand yzy+1zy<z
90 89 ancoms zyy+1zy<z
91 82 90 sylan AzAyy+1zy<z
92 91 an32s AyzAy+1zy<z
93 92 reximdva AyzAy+1zzAy<z
94 93 adantll xzAxzAyzAy+1zzAy<z
95 81 94 mpd xzAxzAyzAy<z
96 95 exp31 xzAxzAyzAy<z
97 96 a1dd xzAxzAy<+∞yzAy<z
98 97 com4r yxzAxzAy<+∞zAy<z
99 xrltnr +∞*¬+∞<+∞
100 67 99 ax-mp ¬+∞<+∞
101 breq1 y=+∞y<+∞+∞<+∞
102 100 101 mtbiri y=+∞¬y<+∞
103 102 pm2.21d y=+∞y<+∞zAy<z
104 103 2a1d y=+∞xzAxzAy<+∞zAy<z
105 0re 0
106 breq1 x=0xz0z
107 106 rexbidv x=0zAxzzA0z
108 107 rspcva 0xzAxzzA0z
109 105 108 mpan xzAxzzA0z
110 82 24 syl AzA−∞<z
111 110 a1d AzA0z−∞<z
112 111 reximdva AzA0zzA−∞<z
113 109 112 mpan9 xzAxzAzA−∞<z
114 113 36 imbitrrid y=−∞xzAxzAzAy<z
115 114 a1dd y=−∞xzAxzAy<+∞zAy<z
116 115 expd y=−∞xzAxzAy<+∞zAy<z
117 98 104 116 3jaoi yy=+∞y=−∞xzAxzAy<+∞zAy<z
118 12 117 sylbi y*xzAxzAy<+∞zAy<z
119 118 com13 AxzAxzy*y<+∞zAy<z
120 119 imp AxzAxzy*y<+∞zAy<z
121 120 ralrimiv AxzAxzy*y<+∞zAy<z
122 74 121 jca AxzAxzyA¬+∞<yy*y<+∞zAy<z
123 breq1 x=+∞x<y+∞<y
124 123 notbid x=+∞¬x<y¬+∞<y
125 124 ralbidv x=+∞yA¬x<yyA¬+∞<y
126 breq2 x=+∞y<xy<+∞
127 126 imbi1d x=+∞y<xzAy<zy<+∞zAy<z
128 127 ralbidv x=+∞y*y<xzAy<zy*y<+∞zAy<z
129 125 128 anbi12d x=+∞yA¬x<yy*y<xzAy<zyA¬+∞<yy*y<+∞zAy<z
130 129 rspcev +∞*yA¬+∞<yy*y<+∞zAy<zx*yA¬x<yy*y<xzAy<z
131 67 122 130 sylancr AxzAxzx*yA¬x<yy*y<xzAy<z
132 66 131 syldan A¬xyAyxx*yA¬x<yy*y<xzAy<z
133 132 adantlr AA¬xyAyxx*yA¬x<yy*y<xzAy<z
134 50 133 pm2.61dan AAx*yA¬x<yy*y<xzAy<z
135 mnfxr −∞*
136 ral0 y¬−∞<y
137 nltmnf y*¬y<−∞
138 137 pm2.21d y*y<−∞zy<z
139 138 rgen y*y<−∞zy<z
140 136 139 pm3.2i y¬−∞<yy*y<−∞zy<z
141 breq1 x=−∞x<y−∞<y
142 141 notbid x=−∞¬x<y¬−∞<y
143 142 ralbidv x=−∞y¬x<yy¬−∞<y
144 breq2 x=−∞y<xy<−∞
145 144 imbi1d x=−∞y<xzy<zy<−∞zy<z
146 145 ralbidv x=−∞y*y<xzy<zy*y<−∞zy<z
147 143 146 anbi12d x=−∞y¬x<yy*y<xzy<zy¬−∞<yy*y<−∞zy<z
148 147 rspcev −∞*y¬−∞<yy*y<−∞zy<zx*y¬x<yy*y<xzy<z
149 135 140 148 mp2an x*y¬x<yy*y<xzy<z
150 149 a1i Ax*y¬x<yy*y<xzy<z
151 6 134 150 pm2.61ne Ax*yA¬x<yy*y<xzAy<z
152 151 adantl A*Ax*yA¬x<yy*y<xzAy<z
153 ssel A*yAy*
154 153 70 syl6 A*yA¬+∞<y
155 154 ralrimiv A*yA¬+∞<y
156 breq2 z=+∞y<zy<+∞
157 156 rspcev +∞Ay<+∞zAy<z
158 157 ex +∞Ay<+∞zAy<z
159 158 ralrimivw +∞Ay*y<+∞zAy<z
160 155 159 anim12i A*+∞AyA¬+∞<yy*y<+∞zAy<z
161 67 160 130 sylancr A*+∞Ax*yA¬x<yy*y<xzAy<z
162 152 161 jaodan A*A+∞Ax*yA¬x<yy*y<xzAy<z