| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zarclsx.1 |  | 
						
							| 2 |  | zarclssn.1 |  | 
						
							| 3 |  | crngring |  | 
						
							| 4 | 3 | ad2antrr |  | 
						
							| 5 |  | simplr |  | 
						
							| 6 | 5 2 | eleqtrdi |  | 
						
							| 7 |  | simpr |  | 
						
							| 8 | 5 | snn0d |  | 
						
							| 9 | 7 8 | eqnetrrd |  | 
						
							| 10 |  | simpll |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 | 1 11 | zarcls1 |  | 
						
							| 13 | 12 | necon3bid |  | 
						
							| 14 | 10 6 13 | syl2anc |  | 
						
							| 15 | 9 14 | mpbid |  | 
						
							| 16 |  | simpr |  | 
						
							| 17 | 10 | ad5antr |  | 
						
							| 18 |  | simplr |  | 
						
							| 19 |  | eqid |  | 
						
							| 20 | 19 | mxidlprm |  | 
						
							| 21 | 17 18 20 | syl2anc |  | 
						
							| 22 |  | simp-4r |  | 
						
							| 23 | 22 16 | sstrd |  | 
						
							| 24 | 1 | a1i |  | 
						
							| 25 |  | sseq1 |  | 
						
							| 26 | 25 | rabbidv |  | 
						
							| 27 | 26 | adantl |  | 
						
							| 28 |  | fvex |  | 
						
							| 29 | 28 | rabex |  | 
						
							| 30 | 29 | a1i |  | 
						
							| 31 | 24 27 6 30 | fvmptd |  | 
						
							| 32 | 7 31 | eqtr2d |  | 
						
							| 33 |  | rabeqsn |  | 
						
							| 34 | 32 33 | sylib |  | 
						
							| 35 | 34 | ad5antr |  | 
						
							| 36 |  | vex |  | 
						
							| 37 |  | eleq1w |  | 
						
							| 38 |  | sseq2 |  | 
						
							| 39 | 37 38 | anbi12d |  | 
						
							| 40 |  | eqeq1 |  | 
						
							| 41 | 39 40 | bibi12d |  | 
						
							| 42 | 36 41 | spcv |  | 
						
							| 43 | 35 42 | syl |  | 
						
							| 44 | 21 23 43 | mpbi2and |  | 
						
							| 45 | 16 44 | sseqtrd |  | 
						
							| 46 | 45 22 | eqssd |  | 
						
							| 47 | 3 | ad5antr |  | 
						
							| 48 |  | simpllr |  | 
						
							| 49 |  | simpr |  | 
						
							| 50 | 49 | neqned |  | 
						
							| 51 | 11 | ssmxidl |  | 
						
							| 52 | 47 48 50 51 | syl3anc |  | 
						
							| 53 | 46 52 | r19.29a |  | 
						
							| 54 | 53 | ex |  | 
						
							| 55 | 54 | orrd |  | 
						
							| 56 | 55 | orcomd |  | 
						
							| 57 | 56 | ex |  | 
						
							| 58 | 57 | ralrimiva |  | 
						
							| 59 | 6 15 58 | 3jca |  | 
						
							| 60 | 11 | ismxidl |  | 
						
							| 61 | 60 | biimpar |  | 
						
							| 62 | 4 59 61 | syl2anc |  | 
						
							| 63 | 1 | a1i |  | 
						
							| 64 | 26 | adantl |  | 
						
							| 65 | 11 | mxidlidl |  | 
						
							| 66 | 3 65 | sylan |  | 
						
							| 67 | 29 | a1i |  | 
						
							| 68 | 63 64 66 67 | fvmptd |  | 
						
							| 69 | 3 | ad2antrr |  | 
						
							| 70 |  | simplr |  | 
						
							| 71 |  | simprl |  | 
						
							| 72 |  | prmidlidl |  | 
						
							| 73 | 69 71 72 | syl2anc |  | 
						
							| 74 |  | simprr |  | 
						
							| 75 | 73 74 | jca |  | 
						
							| 76 | 11 | mxidlmax |  | 
						
							| 77 | 69 70 75 76 | syl21anc |  | 
						
							| 78 |  | eqid |  | 
						
							| 79 | 11 78 | prmidlnr |  | 
						
							| 80 | 69 71 79 | syl2anc |  | 
						
							| 81 | 80 | neneqd |  | 
						
							| 82 | 77 81 | olcnd |  | 
						
							| 83 |  | simpr |  | 
						
							| 84 | 19 | mxidlprm |  | 
						
							| 85 | 84 | adantr |  | 
						
							| 86 | 83 85 | eqeltrd |  | 
						
							| 87 |  | ssidd |  | 
						
							| 88 | 83 87 | eqsstrrd |  | 
						
							| 89 | 86 88 | jca |  | 
						
							| 90 | 82 89 | impbida |  | 
						
							| 91 | 90 | alrimiv |  | 
						
							| 92 | 91 33 | sylibr |  | 
						
							| 93 | 68 92 | eqtr2d |  | 
						
							| 94 | 93 | adantlr |  | 
						
							| 95 | 62 94 | impbida |  |