Metamath Proof Explorer


Theorem zsupss

Description: Any nonempty bounded subset of integers has a supremum in the set. (The proof does not use ax-pre-sup .) (Contributed by Mario Carneiro, 21-Apr-2015)

Ref Expression
Assertion zsupss AAxyAyxxAyA¬x<yyBy<xzAy<z

Proof

Step Hyp Ref Expression
1 breq1 y=myxmx
2 1 cbvralvw yAyxmAmx
3 breq2 x=nmxmn
4 3 ralbidv x=nmAmxmAmn
5 2 4 bitrid x=nyAyxmAmn
6 5 cbvrexvw xyAyxnmAmn
7 simp1rl AAnmAmnwwAn
8 7 znegcld AAnmAmnwwAn
9 simp2 AAnmAmnwwAw
10 9 zred AAnmAmnwwAw
11 7 zred AAnmAmnwwAn
12 breq1 m=wmnwn
13 simp1rr AAnmAmnwwAmAmn
14 simp3 AAnmAmnwwAwA
15 12 13 14 rspcdva AAnmAmnwwAwn
16 10 11 15 lenegcon1d AAnmAmnwwAnw
17 eluz2 wnnwnw
18 8 9 16 17 syl3anbrc AAnmAmnwwAwn
19 18 rabssdv AAnmAmnw|wAn
20 n0 AnnA
21 ssel2 AnAn
22 21 znegcld AnAn
23 21 zcnd AnAn
24 23 negnegd AnAn=n
25 simpr AnAnA
26 24 25 eqeltrd AnAnA
27 negeq w=nw=n
28 27 eleq1d w=nwAnA
29 28 rspcev nnAwwA
30 22 26 29 syl2anc AnAwwA
31 30 ex AnAwwA
32 31 exlimdv AnnAwwA
33 32 imp AnnAwwA
34 20 33 sylan2b AAwwA
35 34 adantr AAnmAmnwwA
36 rabn0 w|wAwwA
37 35 36 sylibr AAnmAmnw|wA
38 infssuzcl w|wAnw|wAsupw|wA<w|wA
39 19 37 38 syl2anc AAnmAmnsupw|wA<w|wA
40 negeq n=supw|wA<n=supw|wA<
41 40 eleq1d n=supw|wA<nAsupw|wA<A
42 negeq w=nw=n
43 42 eleq1d w=nwAnA
44 43 cbvrabv w|wA=n|nA
45 41 44 elrab2 supw|wA<w|wAsupw|wA<supw|wA<A
46 45 simprbi supw|wA<w|wAsupw|wA<A
47 39 46 syl AAnmAmnsupw|wA<A
48 simpll AAnmAmnA
49 48 sselda AAnmAmnyAy
50 49 zred AAnmAmnyAy
51 ssrab2 w|wA
52 39 adantr AAnmAmnyAsupw|wA<w|wA
53 51 52 sselid AAnmAmnyAsupw|wA<
54 53 znegcld AAnmAmnyAsupw|wA<
55 54 zred AAnmAmnyAsupw|wA<
56 53 zred AAnmAmnyAsupw|wA<
57 19 adantr AAnmAmnyAw|wAn
58 negeq w=yw=y
59 58 eleq1d w=ywAyA
60 49 znegcld AAnmAmnyAy
61 49 zcnd AAnmAmnyAy
62 61 negnegd AAnmAmnyAy=y
63 simpr AAnmAmnyAyA
64 62 63 eqeltrd AAnmAmnyAyA
65 59 60 64 elrabd AAnmAmnyAyw|wA
66 infssuzle w|wAnyw|wAsupw|wA<y
67 57 65 66 syl2anc AAnmAmnyAsupw|wA<y
68 56 50 67 lenegcon2d AAnmAmnyAysupw|wA<
69 50 55 68 lensymd AAnmAmnyA¬supw|wA<<y
70 69 ralrimiva AAnmAmnyA¬supw|wA<<y
71 breq2 z=supw|wA<y<zy<supw|wA<
72 71 rspcev supw|wA<Ay<supw|wA<zAy<z
73 72 ex supw|wA<Ay<supw|wA<zAy<z
74 47 73 syl AAnmAmny<supw|wA<zAy<z
75 74 ralrimivw AAnmAmnyBy<supw|wA<zAy<z
76 breq1 x=supw|wA<x<ysupw|wA<<y
77 76 notbid x=supw|wA<¬x<y¬supw|wA<<y
78 77 ralbidv x=supw|wA<yA¬x<yyA¬supw|wA<<y
79 breq2 x=supw|wA<y<xy<supw|wA<
80 79 imbi1d x=supw|wA<y<xzAy<zy<supw|wA<zAy<z
81 80 ralbidv x=supw|wA<yBy<xzAy<zyBy<supw|wA<zAy<z
82 78 81 anbi12d x=supw|wA<yA¬x<yyBy<xzAy<zyA¬supw|wA<<yyBy<supw|wA<zAy<z
83 82 rspcev supw|wA<AyA¬supw|wA<<yyBy<supw|wA<zAy<zxAyA¬x<yyBy<xzAy<z
84 47 70 75 83 syl12anc AAnmAmnxAyA¬x<yyBy<xzAy<z
85 84 rexlimdvaa AAnmAmnxAyA¬x<yyBy<xzAy<z
86 6 85 biimtrid AAxyAyxxAyA¬x<yyBy<xzAy<z
87 86 3impia AAxyAyxxAyA¬x<yyBy<xzAy<z