Metamath Proof Explorer


Theorem 2ndcctbss

Description: If a topology is second-countable, every base has a countable subset which is a base. Exercise 16B2 in Willard. (Contributed by Jeff Hankins, 28-Jan-2010) (Proof shortened by Mario Carneiro, 21-Mar-2015)

Ref Expression
Hypotheses 2ndcctbss.1 𝐽 = ( topGen ‘ 𝐵 )
2ndcctbss.2 𝑆 = { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( 𝑢𝑐𝑣𝑐 ∧ ∃ 𝑤𝐵 ( 𝑢𝑤𝑤𝑣 ) ) }
Assertion 2ndcctbss ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) → ∃ 𝑏 ∈ TopBases ( 𝑏 ≼ ω ∧ 𝑏𝐵𝐽 = ( topGen ‘ 𝑏 ) ) )

Proof

Step Hyp Ref Expression
1 2ndcctbss.1 𝐽 = ( topGen ‘ 𝐵 )
2 2ndcctbss.2 𝑆 = { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( 𝑢𝑐𝑣𝑐 ∧ ∃ 𝑤𝐵 ( 𝑢𝑤𝑤𝑣 ) ) }
3 simpr ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) → 𝐽 ∈ 2ndω )
4 is2ndc ( 𝐽 ∈ 2ndω ↔ ∃ 𝑐 ∈ TopBases ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) )
5 3 4 sylib ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) → ∃ 𝑐 ∈ TopBases ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) )
6 vex 𝑐 ∈ V
7 6 6 xpex ( 𝑐 × 𝑐 ) ∈ V
8 3simpa ( ( 𝑢𝑐𝑣𝑐 ∧ ∃ 𝑤𝐵 ( 𝑢𝑤𝑤𝑣 ) ) → ( 𝑢𝑐𝑣𝑐 ) )
9 8 ssopab2i { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( 𝑢𝑐𝑣𝑐 ∧ ∃ 𝑤𝐵 ( 𝑢𝑤𝑤𝑣 ) ) } ⊆ { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( 𝑢𝑐𝑣𝑐 ) }
10 df-xp ( 𝑐 × 𝑐 ) = { ⟨ 𝑢 , 𝑣 ⟩ ∣ ( 𝑢𝑐𝑣𝑐 ) }
11 9 2 10 3sstr4i 𝑆 ⊆ ( 𝑐 × 𝑐 )
12 ssdomg ( ( 𝑐 × 𝑐 ) ∈ V → ( 𝑆 ⊆ ( 𝑐 × 𝑐 ) → 𝑆 ≼ ( 𝑐 × 𝑐 ) ) )
13 7 11 12 mp2 𝑆 ≼ ( 𝑐 × 𝑐 )
14 6 xpdom1 ( 𝑐 ≼ ω → ( 𝑐 × 𝑐 ) ≼ ( ω × 𝑐 ) )
15 omex ω ∈ V
16 15 xpdom2 ( 𝑐 ≼ ω → ( ω × 𝑐 ) ≼ ( ω × ω ) )
17 domtr ( ( ( 𝑐 × 𝑐 ) ≼ ( ω × 𝑐 ) ∧ ( ω × 𝑐 ) ≼ ( ω × ω ) ) → ( 𝑐 × 𝑐 ) ≼ ( ω × ω ) )
18 14 16 17 syl2anc ( 𝑐 ≼ ω → ( 𝑐 × 𝑐 ) ≼ ( ω × ω ) )
19 xpomen ( ω × ω ) ≈ ω
20 domentr ( ( ( 𝑐 × 𝑐 ) ≼ ( ω × ω ) ∧ ( ω × ω ) ≈ ω ) → ( 𝑐 × 𝑐 ) ≼ ω )
21 18 19 20 sylancl ( 𝑐 ≼ ω → ( 𝑐 × 𝑐 ) ≼ ω )
22 21 adantr ( ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) → ( 𝑐 × 𝑐 ) ≼ ω )
23 22 ad2antll ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) → ( 𝑐 × 𝑐 ) ≼ ω )
24 domtr ( ( 𝑆 ≼ ( 𝑐 × 𝑐 ) ∧ ( 𝑐 × 𝑐 ) ≼ ω ) → 𝑆 ≼ ω )
25 13 23 24 sylancr ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) → 𝑆 ≼ ω )
26 2 relopabiv Rel 𝑆
27 simpr ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ 𝑥𝑆 ) → 𝑥𝑆 )
28 1st2nd ( ( Rel 𝑆𝑥𝑆 ) → 𝑥 = ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ )
29 26 27 28 sylancr ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ 𝑥𝑆 ) → 𝑥 = ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ )
30 29 27 eqeltrrd ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ 𝑥𝑆 ) → ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ∈ 𝑆 )
31 df-br ( ( 1st𝑥 ) 𝑆 ( 2nd𝑥 ) ↔ ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ∈ 𝑆 )
32 fvex ( 1st𝑥 ) ∈ V
33 fvex ( 2nd𝑥 ) ∈ V
34 simpl ( ( 𝑢 = ( 1st𝑥 ) ∧ 𝑣 = ( 2nd𝑥 ) ) → 𝑢 = ( 1st𝑥 ) )
35 34 eleq1d ( ( 𝑢 = ( 1st𝑥 ) ∧ 𝑣 = ( 2nd𝑥 ) ) → ( 𝑢𝑐 ↔ ( 1st𝑥 ) ∈ 𝑐 ) )
36 simpr ( ( 𝑢 = ( 1st𝑥 ) ∧ 𝑣 = ( 2nd𝑥 ) ) → 𝑣 = ( 2nd𝑥 ) )
37 36 eleq1d ( ( 𝑢 = ( 1st𝑥 ) ∧ 𝑣 = ( 2nd𝑥 ) ) → ( 𝑣𝑐 ↔ ( 2nd𝑥 ) ∈ 𝑐 ) )
38 sseq1 ( 𝑢 = ( 1st𝑥 ) → ( 𝑢𝑤 ↔ ( 1st𝑥 ) ⊆ 𝑤 ) )
39 sseq2 ( 𝑣 = ( 2nd𝑥 ) → ( 𝑤𝑣𝑤 ⊆ ( 2nd𝑥 ) ) )
40 38 39 bi2anan9 ( ( 𝑢 = ( 1st𝑥 ) ∧ 𝑣 = ( 2nd𝑥 ) ) → ( ( 𝑢𝑤𝑤𝑣 ) ↔ ( ( 1st𝑥 ) ⊆ 𝑤𝑤 ⊆ ( 2nd𝑥 ) ) ) )
41 40 rexbidv ( ( 𝑢 = ( 1st𝑥 ) ∧ 𝑣 = ( 2nd𝑥 ) ) → ( ∃ 𝑤𝐵 ( 𝑢𝑤𝑤𝑣 ) ↔ ∃ 𝑤𝐵 ( ( 1st𝑥 ) ⊆ 𝑤𝑤 ⊆ ( 2nd𝑥 ) ) ) )
42 35 37 41 3anbi123d ( ( 𝑢 = ( 1st𝑥 ) ∧ 𝑣 = ( 2nd𝑥 ) ) → ( ( 𝑢𝑐𝑣𝑐 ∧ ∃ 𝑤𝐵 ( 𝑢𝑤𝑤𝑣 ) ) ↔ ( ( 1st𝑥 ) ∈ 𝑐 ∧ ( 2nd𝑥 ) ∈ 𝑐 ∧ ∃ 𝑤𝐵 ( ( 1st𝑥 ) ⊆ 𝑤𝑤 ⊆ ( 2nd𝑥 ) ) ) ) )
43 32 33 42 2 braba ( ( 1st𝑥 ) 𝑆 ( 2nd𝑥 ) ↔ ( ( 1st𝑥 ) ∈ 𝑐 ∧ ( 2nd𝑥 ) ∈ 𝑐 ∧ ∃ 𝑤𝐵 ( ( 1st𝑥 ) ⊆ 𝑤𝑤 ⊆ ( 2nd𝑥 ) ) ) )
44 31 43 bitr3i ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ∈ 𝑆 ↔ ( ( 1st𝑥 ) ∈ 𝑐 ∧ ( 2nd𝑥 ) ∈ 𝑐 ∧ ∃ 𝑤𝐵 ( ( 1st𝑥 ) ⊆ 𝑤𝑤 ⊆ ( 2nd𝑥 ) ) ) )
45 44 simp3bi ( ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ ∈ 𝑆 → ∃ 𝑤𝐵 ( ( 1st𝑥 ) ⊆ 𝑤𝑤 ⊆ ( 2nd𝑥 ) ) )
46 30 45 syl ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ 𝑥𝑆 ) → ∃ 𝑤𝐵 ( ( 1st𝑥 ) ⊆ 𝑤𝑤 ⊆ ( 2nd𝑥 ) ) )
47 fvi ( 𝐵 ∈ TopBases → ( I ‘ 𝐵 ) = 𝐵 )
48 47 ad3antrrr ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ 𝑥𝑆 ) → ( I ‘ 𝐵 ) = 𝐵 )
49 46 48 rexeqtrrdv ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ 𝑥𝑆 ) → ∃ 𝑤 ∈ ( I ‘ 𝐵 ) ( ( 1st𝑥 ) ⊆ 𝑤𝑤 ⊆ ( 2nd𝑥 ) ) )
50 49 ralrimiva ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) → ∀ 𝑥𝑆𝑤 ∈ ( I ‘ 𝐵 ) ( ( 1st𝑥 ) ⊆ 𝑤𝑤 ⊆ ( 2nd𝑥 ) ) )
51 fvex ( I ‘ 𝐵 ) ∈ V
52 sseq2 ( 𝑤 = ( 𝑓𝑥 ) → ( ( 1st𝑥 ) ⊆ 𝑤 ↔ ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ) )
53 sseq1 ( 𝑤 = ( 𝑓𝑥 ) → ( 𝑤 ⊆ ( 2nd𝑥 ) ↔ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) )
54 52 53 anbi12d ( 𝑤 = ( 𝑓𝑥 ) → ( ( ( 1st𝑥 ) ⊆ 𝑤𝑤 ⊆ ( 2nd𝑥 ) ) ↔ ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) )
55 51 54 axcc4dom ( ( 𝑆 ≼ ω ∧ ∀ 𝑥𝑆𝑤 ∈ ( I ‘ 𝐵 ) ( ( 1st𝑥 ) ⊆ 𝑤𝑤 ⊆ ( 2nd𝑥 ) ) ) → ∃ 𝑓 ( 𝑓 : 𝑆 ⟶ ( I ‘ 𝐵 ) ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) )
56 25 50 55 syl2anc ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) → ∃ 𝑓 ( 𝑓 : 𝑆 ⟶ ( I ‘ 𝐵 ) ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) )
57 47 ad2antrr ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) → ( I ‘ 𝐵 ) = 𝐵 )
58 57 feq3d ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) → ( 𝑓 : 𝑆 ⟶ ( I ‘ 𝐵 ) ↔ 𝑓 : 𝑆𝐵 ) )
59 58 anbi1d ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) → ( ( 𝑓 : 𝑆 ⟶ ( I ‘ 𝐵 ) ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ↔ ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ) )
60 2ndctop ( 𝐽 ∈ 2ndω → 𝐽 ∈ Top )
61 60 adantl ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) → 𝐽 ∈ Top )
62 61 ad2antrr ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ) → 𝐽 ∈ Top )
63 frn ( 𝑓 : 𝑆𝐵 → ran 𝑓𝐵 )
64 63 ad2antrl ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ) → ran 𝑓𝐵 )
65 bastg ( 𝐵 ∈ TopBases → 𝐵 ⊆ ( topGen ‘ 𝐵 ) )
66 65 ad3antrrr ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ) → 𝐵 ⊆ ( topGen ‘ 𝐵 ) )
67 66 1 sseqtrrdi ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ) → 𝐵𝐽 )
68 64 67 sstrd ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ) → ran 𝑓𝐽 )
69 simprrl ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ∧ ( 𝑜𝐽𝑡𝑜 ) ) ) → 𝑜𝐽 )
70 simprr ( ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) → ( topGen ‘ 𝑐 ) = 𝐽 )
71 70 ad2antlr ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ∧ ( 𝑜𝐽𝑡𝑜 ) ) ) → ( topGen ‘ 𝑐 ) = 𝐽 )
72 69 71 eleqtrrd ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ∧ ( 𝑜𝐽𝑡𝑜 ) ) ) → 𝑜 ∈ ( topGen ‘ 𝑐 ) )
73 simprrr ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ∧ ( 𝑜𝐽𝑡𝑜 ) ) ) → 𝑡𝑜 )
74 tg2 ( ( 𝑜 ∈ ( topGen ‘ 𝑐 ) ∧ 𝑡𝑜 ) → ∃ 𝑑𝑐 ( 𝑡𝑑𝑑𝑜 ) )
75 72 73 74 syl2anc ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ∧ ( 𝑜𝐽𝑡𝑜 ) ) ) → ∃ 𝑑𝑐 ( 𝑡𝑑𝑑𝑜 ) )
76 bastg ( 𝑐 ∈ TopBases → 𝑐 ⊆ ( topGen ‘ 𝑐 ) )
77 76 ad2antrl ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) → 𝑐 ⊆ ( topGen ‘ 𝑐 ) )
78 77 ad2antrr ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ∧ ( 𝑜𝐽𝑡𝑜 ) ) ) ∧ ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ) → 𝑐 ⊆ ( topGen ‘ 𝑐 ) )
79 1 eqeq2i ( ( topGen ‘ 𝑐 ) = 𝐽 ↔ ( topGen ‘ 𝑐 ) = ( topGen ‘ 𝐵 ) )
80 79 biimpi ( ( topGen ‘ 𝑐 ) = 𝐽 → ( topGen ‘ 𝑐 ) = ( topGen ‘ 𝐵 ) )
81 80 adantl ( ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) → ( topGen ‘ 𝑐 ) = ( topGen ‘ 𝐵 ) )
82 81 ad2antll ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) → ( topGen ‘ 𝑐 ) = ( topGen ‘ 𝐵 ) )
83 82 ad2antrr ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ∧ ( 𝑜𝐽𝑡𝑜 ) ) ) ∧ ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ) → ( topGen ‘ 𝑐 ) = ( topGen ‘ 𝐵 ) )
84 78 83 sseqtrd ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ∧ ( 𝑜𝐽𝑡𝑜 ) ) ) ∧ ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ) → 𝑐 ⊆ ( topGen ‘ 𝐵 ) )
85 simprl ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ∧ ( 𝑜𝐽𝑡𝑜 ) ) ) ∧ ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ) → 𝑑𝑐 )
86 84 85 sseldd ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ∧ ( 𝑜𝐽𝑡𝑜 ) ) ) ∧ ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ) → 𝑑 ∈ ( topGen ‘ 𝐵 ) )
87 simprrl ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ∧ ( 𝑜𝐽𝑡𝑜 ) ) ) ∧ ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ) → 𝑡𝑑 )
88 tg2 ( ( 𝑑 ∈ ( topGen ‘ 𝐵 ) ∧ 𝑡𝑑 ) → ∃ 𝑚𝐵 ( 𝑡𝑚𝑚𝑑 ) )
89 86 87 88 syl2anc ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ∧ ( 𝑜𝐽𝑡𝑜 ) ) ) ∧ ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ) → ∃ 𝑚𝐵 ( 𝑡𝑚𝑚𝑑 ) )
90 65 ad3antrrr ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ∧ ( 𝑜𝐽𝑡𝑜 ) ) ) → 𝐵 ⊆ ( topGen ‘ 𝐵 ) )
91 90 ad2antrr ( ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ∧ ( 𝑜𝐽𝑡𝑜 ) ) ) ∧ ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ) ∧ ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) ) → 𝐵 ⊆ ( topGen ‘ 𝐵 ) )
92 71 ad2antrr ( ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ∧ ( 𝑜𝐽𝑡𝑜 ) ) ) ∧ ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ) ∧ ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) ) → ( topGen ‘ 𝑐 ) = 𝐽 )
93 92 1 eqtr2di ( ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ∧ ( 𝑜𝐽𝑡𝑜 ) ) ) ∧ ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ) ∧ ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) ) → ( topGen ‘ 𝐵 ) = ( topGen ‘ 𝑐 ) )
94 91 93 sseqtrd ( ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ∧ ( 𝑜𝐽𝑡𝑜 ) ) ) ∧ ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ) ∧ ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) ) → 𝐵 ⊆ ( topGen ‘ 𝑐 ) )
95 simprl ( ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ∧ ( 𝑜𝐽𝑡𝑜 ) ) ) ∧ ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ) ∧ ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) ) → 𝑚𝐵 )
96 94 95 sseldd ( ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ∧ ( 𝑜𝐽𝑡𝑜 ) ) ) ∧ ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ) ∧ ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) ) → 𝑚 ∈ ( topGen ‘ 𝑐 ) )
97 simprrl ( ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ∧ ( 𝑜𝐽𝑡𝑜 ) ) ) ∧ ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ) ∧ ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) ) → 𝑡𝑚 )
98 tg2 ( ( 𝑚 ∈ ( topGen ‘ 𝑐 ) ∧ 𝑡𝑚 ) → ∃ 𝑛𝑐 ( 𝑡𝑛𝑛𝑚 ) )
99 96 97 98 syl2anc ( ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ∧ ( 𝑜𝐽𝑡𝑜 ) ) ) ∧ ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ) ∧ ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) ) → ∃ 𝑛𝑐 ( 𝑡𝑛𝑛𝑚 ) )
100 ffn ( 𝑓 : 𝑆𝐵𝑓 Fn 𝑆 )
101 100 ad2antrr ( ( ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ∧ ( 𝑜𝐽𝑡𝑜 ) ) → 𝑓 Fn 𝑆 )
102 101 ad2antlr ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ∧ ( 𝑜𝐽𝑡𝑜 ) ) ) ∧ ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ) → 𝑓 Fn 𝑆 )
103 102 ad2antrr ( ( ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ∧ ( 𝑜𝐽𝑡𝑜 ) ) ) ∧ ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ) ∧ ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) ) ∧ ( 𝑛𝑐 ∧ ( 𝑡𝑛𝑛𝑚 ) ) ) → 𝑓 Fn 𝑆 )
104 simprl ( ( ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ∧ ( 𝑜𝐽𝑡𝑜 ) ) ) ∧ ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ) ∧ ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) ) ∧ ( 𝑛𝑐 ∧ ( 𝑡𝑛𝑛𝑚 ) ) ) → 𝑛𝑐 )
105 85 ad2antrr ( ( ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ∧ ( 𝑜𝐽𝑡𝑜 ) ) ) ∧ ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ) ∧ ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) ) ∧ ( 𝑛𝑐 ∧ ( 𝑡𝑛𝑛𝑚 ) ) ) → 𝑑𝑐 )
106 simplrl ( ( ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ∧ ( 𝑜𝐽𝑡𝑜 ) ) ) ∧ ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ) ∧ ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) ) ∧ ( 𝑛𝑐 ∧ ( 𝑡𝑛𝑛𝑚 ) ) ) → 𝑚𝐵 )
107 simprrr ( ( ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ∧ ( 𝑜𝐽𝑡𝑜 ) ) ) ∧ ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ) ∧ ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) ) ∧ ( 𝑛𝑐 ∧ ( 𝑡𝑛𝑛𝑚 ) ) ) → 𝑛𝑚 )
108 simprr ( ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) → 𝑚𝑑 )
109 108 ad2antlr ( ( ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ∧ ( 𝑜𝐽𝑡𝑜 ) ) ) ∧ ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ) ∧ ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) ) ∧ ( 𝑛𝑐 ∧ ( 𝑡𝑛𝑛𝑚 ) ) ) → 𝑚𝑑 )
110 sseq2 ( 𝑤 = 𝑚 → ( 𝑛𝑤𝑛𝑚 ) )
111 sseq1 ( 𝑤 = 𝑚 → ( 𝑤𝑑𝑚𝑑 ) )
112 110 111 anbi12d ( 𝑤 = 𝑚 → ( ( 𝑛𝑤𝑤𝑑 ) ↔ ( 𝑛𝑚𝑚𝑑 ) ) )
113 112 rspcev ( ( 𝑚𝐵 ∧ ( 𝑛𝑚𝑚𝑑 ) ) → ∃ 𝑤𝐵 ( 𝑛𝑤𝑤𝑑 ) )
114 106 107 109 113 syl12anc ( ( ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ∧ ( 𝑜𝐽𝑡𝑜 ) ) ) ∧ ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ) ∧ ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) ) ∧ ( 𝑛𝑐 ∧ ( 𝑡𝑛𝑛𝑚 ) ) ) → ∃ 𝑤𝐵 ( 𝑛𝑤𝑤𝑑 ) )
115 df-br ( 𝑛 𝑆 𝑑 ↔ ⟨ 𝑛 , 𝑑 ⟩ ∈ 𝑆 )
116 vex 𝑛 ∈ V
117 vex 𝑑 ∈ V
118 simpl ( ( 𝑢 = 𝑛𝑣 = 𝑑 ) → 𝑢 = 𝑛 )
119 118 eleq1d ( ( 𝑢 = 𝑛𝑣 = 𝑑 ) → ( 𝑢𝑐𝑛𝑐 ) )
120 simpr ( ( 𝑢 = 𝑛𝑣 = 𝑑 ) → 𝑣 = 𝑑 )
121 120 eleq1d ( ( 𝑢 = 𝑛𝑣 = 𝑑 ) → ( 𝑣𝑐𝑑𝑐 ) )
122 sseq1 ( 𝑢 = 𝑛 → ( 𝑢𝑤𝑛𝑤 ) )
123 sseq2 ( 𝑣 = 𝑑 → ( 𝑤𝑣𝑤𝑑 ) )
124 122 123 bi2anan9 ( ( 𝑢 = 𝑛𝑣 = 𝑑 ) → ( ( 𝑢𝑤𝑤𝑣 ) ↔ ( 𝑛𝑤𝑤𝑑 ) ) )
125 124 rexbidv ( ( 𝑢 = 𝑛𝑣 = 𝑑 ) → ( ∃ 𝑤𝐵 ( 𝑢𝑤𝑤𝑣 ) ↔ ∃ 𝑤𝐵 ( 𝑛𝑤𝑤𝑑 ) ) )
126 119 121 125 3anbi123d ( ( 𝑢 = 𝑛𝑣 = 𝑑 ) → ( ( 𝑢𝑐𝑣𝑐 ∧ ∃ 𝑤𝐵 ( 𝑢𝑤𝑤𝑣 ) ) ↔ ( 𝑛𝑐𝑑𝑐 ∧ ∃ 𝑤𝐵 ( 𝑛𝑤𝑤𝑑 ) ) ) )
127 116 117 126 2 braba ( 𝑛 𝑆 𝑑 ↔ ( 𝑛𝑐𝑑𝑐 ∧ ∃ 𝑤𝐵 ( 𝑛𝑤𝑤𝑑 ) ) )
128 115 127 bitr3i ( ⟨ 𝑛 , 𝑑 ⟩ ∈ 𝑆 ↔ ( 𝑛𝑐𝑑𝑐 ∧ ∃ 𝑤𝐵 ( 𝑛𝑤𝑤𝑑 ) ) )
129 104 105 114 128 syl3anbrc ( ( ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ∧ ( 𝑜𝐽𝑡𝑜 ) ) ) ∧ ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ) ∧ ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) ) ∧ ( 𝑛𝑐 ∧ ( 𝑡𝑛𝑛𝑚 ) ) ) → ⟨ 𝑛 , 𝑑 ⟩ ∈ 𝑆 )
130 fnfvelrn ( ( 𝑓 Fn 𝑆 ∧ ⟨ 𝑛 , 𝑑 ⟩ ∈ 𝑆 ) → ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ∈ ran 𝑓 )
131 103 129 130 syl2anc ( ( ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ∧ ( 𝑜𝐽𝑡𝑜 ) ) ) ∧ ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ) ∧ ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) ) ∧ ( 𝑛𝑐 ∧ ( 𝑡𝑛𝑛𝑚 ) ) ) → ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ∈ ran 𝑓 )
132 simprl ( ( ( ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ∧ ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) ) ∧ ( 𝑛𝑐 ∧ ( 𝑡𝑛𝑛𝑚 ) ) ) → 𝑛𝑐 )
133 simplll ( ( ( ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ∧ ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) ) ∧ ( 𝑛𝑐 ∧ ( 𝑡𝑛𝑛𝑚 ) ) ) → 𝑑𝑐 )
134 simplrl ( ( ( ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ∧ ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) ) ∧ ( 𝑛𝑐 ∧ ( 𝑡𝑛𝑛𝑚 ) ) ) → 𝑚𝐵 )
135 simprrr ( ( ( ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ∧ ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) ) ∧ ( 𝑛𝑐 ∧ ( 𝑡𝑛𝑛𝑚 ) ) ) → 𝑛𝑚 )
136 108 ad2antlr ( ( ( ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ∧ ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) ) ∧ ( 𝑛𝑐 ∧ ( 𝑡𝑛𝑛𝑚 ) ) ) → 𝑚𝑑 )
137 134 135 136 113 syl12anc ( ( ( ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ∧ ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) ) ∧ ( 𝑛𝑐 ∧ ( 𝑡𝑛𝑛𝑚 ) ) ) → ∃ 𝑤𝐵 ( 𝑛𝑤𝑤𝑑 ) )
138 132 133 137 128 syl3anbrc ( ( ( ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ∧ ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) ) ∧ ( 𝑛𝑐 ∧ ( 𝑡𝑛𝑛𝑚 ) ) ) → ⟨ 𝑛 , 𝑑 ⟩ ∈ 𝑆 )
139 fveq2 ( 𝑥 = ⟨ 𝑛 , 𝑑 ⟩ → ( 1st𝑥 ) = ( 1st ‘ ⟨ 𝑛 , 𝑑 ⟩ ) )
140 fveq2 ( 𝑥 = ⟨ 𝑛 , 𝑑 ⟩ → ( 𝑓𝑥 ) = ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) )
141 139 140 sseq12d ( 𝑥 = ⟨ 𝑛 , 𝑑 ⟩ → ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ↔ ( 1st ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ⊆ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ) )
142 fveq2 ( 𝑥 = ⟨ 𝑛 , 𝑑 ⟩ → ( 2nd𝑥 ) = ( 2nd ‘ ⟨ 𝑛 , 𝑑 ⟩ ) )
143 140 142 sseq12d ( 𝑥 = ⟨ 𝑛 , 𝑑 ⟩ → ( ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ↔ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ⊆ ( 2nd ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ) )
144 141 143 anbi12d ( 𝑥 = ⟨ 𝑛 , 𝑑 ⟩ → ( ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ↔ ( ( 1st ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ⊆ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ∧ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ⊆ ( 2nd ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ) ) )
145 144 rspcv ( ⟨ 𝑛 , 𝑑 ⟩ ∈ 𝑆 → ( ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) → ( ( 1st ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ⊆ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ∧ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ⊆ ( 2nd ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ) ) )
146 138 145 syl ( ( ( ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ∧ ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) ) ∧ ( 𝑛𝑐 ∧ ( 𝑡𝑛𝑛𝑚 ) ) ) → ( ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) → ( ( 1st ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ⊆ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ∧ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ⊆ ( 2nd ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ) ) )
147 116 117 op1st ( 1st ‘ ⟨ 𝑛 , 𝑑 ⟩ ) = 𝑛
148 147 sseq1i ( ( 1st ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ⊆ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ↔ 𝑛 ⊆ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) )
149 116 117 op2nd ( 2nd ‘ ⟨ 𝑛 , 𝑑 ⟩ ) = 𝑑
150 149 sseq2i ( ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ⊆ ( 2nd ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ↔ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ⊆ 𝑑 )
151 148 150 anbi12i ( ( ( 1st ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ⊆ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ∧ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ⊆ ( 2nd ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ) ↔ ( 𝑛 ⊆ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ∧ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ⊆ 𝑑 ) )
152 simprl ( ( ( ( ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ∧ ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) ) ∧ ( 𝑛𝑐 ∧ ( 𝑡𝑛𝑛𝑚 ) ) ) ∧ ( 𝑛 ⊆ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ∧ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ⊆ 𝑑 ) ) → 𝑛 ⊆ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) )
153 simprl ( ( 𝑛𝑐 ∧ ( 𝑡𝑛𝑛𝑚 ) ) → 𝑡𝑛 )
154 153 ad2antlr ( ( ( ( ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ∧ ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) ) ∧ ( 𝑛𝑐 ∧ ( 𝑡𝑛𝑛𝑚 ) ) ) ∧ ( 𝑛 ⊆ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ∧ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ⊆ 𝑑 ) ) → 𝑡𝑛 )
155 152 154 sseldd ( ( ( ( ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ∧ ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) ) ∧ ( 𝑛𝑐 ∧ ( 𝑡𝑛𝑛𝑚 ) ) ) ∧ ( 𝑛 ⊆ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ∧ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ⊆ 𝑑 ) ) → 𝑡 ∈ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) )
156 simprr ( ( ( ( ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ∧ ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) ) ∧ ( 𝑛𝑐 ∧ ( 𝑡𝑛𝑛𝑚 ) ) ) ∧ ( 𝑛 ⊆ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ∧ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ⊆ 𝑑 ) ) → ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ⊆ 𝑑 )
157 simplrr ( ( ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ∧ ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) ) → 𝑑𝑜 )
158 157 ad2antrr ( ( ( ( ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ∧ ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) ) ∧ ( 𝑛𝑐 ∧ ( 𝑡𝑛𝑛𝑚 ) ) ) ∧ ( 𝑛 ⊆ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ∧ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ⊆ 𝑑 ) ) → 𝑑𝑜 )
159 156 158 sstrd ( ( ( ( ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ∧ ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) ) ∧ ( 𝑛𝑐 ∧ ( 𝑡𝑛𝑛𝑚 ) ) ) ∧ ( 𝑛 ⊆ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ∧ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ⊆ 𝑑 ) ) → ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ⊆ 𝑜 )
160 155 159 jca ( ( ( ( ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ∧ ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) ) ∧ ( 𝑛𝑐 ∧ ( 𝑡𝑛𝑛𝑚 ) ) ) ∧ ( 𝑛 ⊆ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ∧ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ⊆ 𝑑 ) ) → ( 𝑡 ∈ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ∧ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ⊆ 𝑜 ) )
161 160 ex ( ( ( ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ∧ ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) ) ∧ ( 𝑛𝑐 ∧ ( 𝑡𝑛𝑛𝑚 ) ) ) → ( ( 𝑛 ⊆ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ∧ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ⊆ 𝑑 ) → ( 𝑡 ∈ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ∧ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ⊆ 𝑜 ) ) )
162 151 161 biimtrid ( ( ( ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ∧ ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) ) ∧ ( 𝑛𝑐 ∧ ( 𝑡𝑛𝑛𝑚 ) ) ) → ( ( ( 1st ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ⊆ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ∧ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ⊆ ( 2nd ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ) → ( 𝑡 ∈ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ∧ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ⊆ 𝑜 ) ) )
163 146 162 syldc ( ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) → ( ( ( ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ∧ ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) ) ∧ ( 𝑛𝑐 ∧ ( 𝑡𝑛𝑛𝑚 ) ) ) → ( 𝑡 ∈ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ∧ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ⊆ 𝑜 ) ) )
164 163 exp4c ( ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) → ( ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) → ( ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) → ( ( 𝑛𝑐 ∧ ( 𝑡𝑛𝑛𝑚 ) ) → ( 𝑡 ∈ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ∧ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ⊆ 𝑜 ) ) ) ) )
165 164 ad2antlr ( ( ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ∧ ( 𝑜𝐽𝑡𝑜 ) ) → ( ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) → ( ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) → ( ( 𝑛𝑐 ∧ ( 𝑡𝑛𝑛𝑚 ) ) → ( 𝑡 ∈ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ∧ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ⊆ 𝑜 ) ) ) ) )
166 165 adantl ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ∧ ( 𝑜𝐽𝑡𝑜 ) ) ) → ( ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) → ( ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) → ( ( 𝑛𝑐 ∧ ( 𝑡𝑛𝑛𝑚 ) ) → ( 𝑡 ∈ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ∧ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ⊆ 𝑜 ) ) ) ) )
167 166 imp41 ( ( ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ∧ ( 𝑜𝐽𝑡𝑜 ) ) ) ∧ ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ) ∧ ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) ) ∧ ( 𝑛𝑐 ∧ ( 𝑡𝑛𝑛𝑚 ) ) ) → ( 𝑡 ∈ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ∧ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ⊆ 𝑜 ) )
168 eleq2 ( 𝑏 = ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) → ( 𝑡𝑏𝑡 ∈ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ) )
169 sseq1 ( 𝑏 = ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) → ( 𝑏𝑜 ↔ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ⊆ 𝑜 ) )
170 168 169 anbi12d ( 𝑏 = ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) → ( ( 𝑡𝑏𝑏𝑜 ) ↔ ( 𝑡 ∈ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ∧ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ⊆ 𝑜 ) ) )
171 170 rspcev ( ( ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ∈ ran 𝑓 ∧ ( 𝑡 ∈ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ∧ ( 𝑓 ‘ ⟨ 𝑛 , 𝑑 ⟩ ) ⊆ 𝑜 ) ) → ∃ 𝑏 ∈ ran 𝑓 ( 𝑡𝑏𝑏𝑜 ) )
172 131 167 171 syl2anc ( ( ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ∧ ( 𝑜𝐽𝑡𝑜 ) ) ) ∧ ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ) ∧ ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) ) ∧ ( 𝑛𝑐 ∧ ( 𝑡𝑛𝑛𝑚 ) ) ) → ∃ 𝑏 ∈ ran 𝑓 ( 𝑡𝑏𝑏𝑜 ) )
173 99 172 rexlimddv ( ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ∧ ( 𝑜𝐽𝑡𝑜 ) ) ) ∧ ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ) ∧ ( 𝑚𝐵 ∧ ( 𝑡𝑚𝑚𝑑 ) ) ) → ∃ 𝑏 ∈ ran 𝑓 ( 𝑡𝑏𝑏𝑜 ) )
174 89 173 rexlimddv ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ∧ ( 𝑜𝐽𝑡𝑜 ) ) ) ∧ ( 𝑑𝑐 ∧ ( 𝑡𝑑𝑑𝑜 ) ) ) → ∃ 𝑏 ∈ ran 𝑓 ( 𝑡𝑏𝑏𝑜 ) )
175 75 174 rexlimddv ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ∧ ( 𝑜𝐽𝑡𝑜 ) ) ) → ∃ 𝑏 ∈ ran 𝑓 ( 𝑡𝑏𝑏𝑜 ) )
176 175 expr ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ) → ( ( 𝑜𝐽𝑡𝑜 ) → ∃ 𝑏 ∈ ran 𝑓 ( 𝑡𝑏𝑏𝑜 ) ) )
177 176 ralrimivv ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ) → ∀ 𝑜𝐽𝑡𝑜𝑏 ∈ ran 𝑓 ( 𝑡𝑏𝑏𝑜 ) )
178 basgen2 ( ( 𝐽 ∈ Top ∧ ran 𝑓𝐽 ∧ ∀ 𝑜𝐽𝑡𝑜𝑏 ∈ ran 𝑓 ( 𝑡𝑏𝑏𝑜 ) ) → ( topGen ‘ ran 𝑓 ) = 𝐽 )
179 62 68 177 178 syl3anc ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ) → ( topGen ‘ ran 𝑓 ) = 𝐽 )
180 179 62 eqeltrd ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ) → ( topGen ‘ ran 𝑓 ) ∈ Top )
181 tgclb ( ran 𝑓 ∈ TopBases ↔ ( topGen ‘ ran 𝑓 ) ∈ Top )
182 180 181 sylibr ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ) → ran 𝑓 ∈ TopBases )
183 omelon ω ∈ On
184 25 adantr ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ) → 𝑆 ≼ ω )
185 ondomen ( ( ω ∈ On ∧ 𝑆 ≼ ω ) → 𝑆 ∈ dom card )
186 183 184 185 sylancr ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ) → 𝑆 ∈ dom card )
187 100 ad2antrl ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ) → 𝑓 Fn 𝑆 )
188 dffn4 ( 𝑓 Fn 𝑆𝑓 : 𝑆onto→ ran 𝑓 )
189 187 188 sylib ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ) → 𝑓 : 𝑆onto→ ran 𝑓 )
190 fodomnum ( 𝑆 ∈ dom card → ( 𝑓 : 𝑆onto→ ran 𝑓 → ran 𝑓𝑆 ) )
191 186 189 190 sylc ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ) → ran 𝑓𝑆 )
192 domtr ( ( ran 𝑓𝑆𝑆 ≼ ω ) → ran 𝑓 ≼ ω )
193 191 184 192 syl2anc ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ) → ran 𝑓 ≼ ω )
194 179 eqcomd ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ) → 𝐽 = ( topGen ‘ ran 𝑓 ) )
195 breq1 ( 𝑏 = ran 𝑓 → ( 𝑏 ≼ ω ↔ ran 𝑓 ≼ ω ) )
196 sseq1 ( 𝑏 = ran 𝑓 → ( 𝑏𝐵 ↔ ran 𝑓𝐵 ) )
197 fveq2 ( 𝑏 = ran 𝑓 → ( topGen ‘ 𝑏 ) = ( topGen ‘ ran 𝑓 ) )
198 197 eqeq2d ( 𝑏 = ran 𝑓 → ( 𝐽 = ( topGen ‘ 𝑏 ) ↔ 𝐽 = ( topGen ‘ ran 𝑓 ) ) )
199 195 196 198 3anbi123d ( 𝑏 = ran 𝑓 → ( ( 𝑏 ≼ ω ∧ 𝑏𝐵𝐽 = ( topGen ‘ 𝑏 ) ) ↔ ( ran 𝑓 ≼ ω ∧ ran 𝑓𝐵𝐽 = ( topGen ‘ ran 𝑓 ) ) ) )
200 199 rspcev ( ( ran 𝑓 ∈ TopBases ∧ ( ran 𝑓 ≼ ω ∧ ran 𝑓𝐵𝐽 = ( topGen ‘ ran 𝑓 ) ) ) → ∃ 𝑏 ∈ TopBases ( 𝑏 ≼ ω ∧ 𝑏𝐵𝐽 = ( topGen ‘ 𝑏 ) ) )
201 182 193 64 194 200 syl13anc ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) ) → ∃ 𝑏 ∈ TopBases ( 𝑏 ≼ ω ∧ 𝑏𝐵𝐽 = ( topGen ‘ 𝑏 ) ) )
202 201 ex ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) → ( ( 𝑓 : 𝑆𝐵 ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) → ∃ 𝑏 ∈ TopBases ( 𝑏 ≼ ω ∧ 𝑏𝐵𝐽 = ( topGen ‘ 𝑏 ) ) ) )
203 59 202 sylbid ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) → ( ( 𝑓 : 𝑆 ⟶ ( I ‘ 𝐵 ) ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) → ∃ 𝑏 ∈ TopBases ( 𝑏 ≼ ω ∧ 𝑏𝐵𝐽 = ( topGen ‘ 𝑏 ) ) ) )
204 203 exlimdv ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) → ( ∃ 𝑓 ( 𝑓 : 𝑆 ⟶ ( I ‘ 𝐵 ) ∧ ∀ 𝑥𝑆 ( ( 1st𝑥 ) ⊆ ( 𝑓𝑥 ) ∧ ( 𝑓𝑥 ) ⊆ ( 2nd𝑥 ) ) ) → ∃ 𝑏 ∈ TopBases ( 𝑏 ≼ ω ∧ 𝑏𝐵𝐽 = ( topGen ‘ 𝑏 ) ) ) )
205 56 204 mpd ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) → ∃ 𝑏 ∈ TopBases ( 𝑏 ≼ ω ∧ 𝑏𝐵𝐽 = ( topGen ‘ 𝑏 ) ) )
206 5 205 rexlimddv ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) → ∃ 𝑏 ∈ TopBases ( 𝑏 ≼ ω ∧ 𝑏𝐵𝐽 = ( topGen ‘ 𝑏 ) ) )