| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aalioulem2.a | ⊢ 𝑁  =  ( deg ‘ 𝐹 ) | 
						
							| 2 |  | aalioulem2.b | ⊢ ( 𝜑  →  𝐹  ∈  ( Poly ‘ ℤ ) ) | 
						
							| 3 |  | aalioulem2.c | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 4 |  | aalioulem2.d | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 5 |  | aalioulem3.e | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝐴 )  =  0 ) | 
						
							| 6 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 7 |  | resubcl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( 𝐴  −  1 )  ∈  ℝ ) | 
						
							| 8 | 4 6 7 | sylancl | ⊢ ( 𝜑  →  ( 𝐴  −  1 )  ∈  ℝ ) | 
						
							| 9 |  | peano2re | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  +  1 )  ∈  ℝ ) | 
						
							| 10 | 4 9 | syl | ⊢ ( 𝜑  →  ( 𝐴  +  1 )  ∈  ℝ ) | 
						
							| 11 |  | reelprrecn | ⊢ ℝ  ∈  { ℝ ,  ℂ } | 
						
							| 12 |  | ssid | ⊢ ℂ  ⊆  ℂ | 
						
							| 13 |  | fncpn | ⊢ ( ℂ  ⊆  ℂ  →  ( 𝓑C𝑛 ‘ ℂ )  Fn  ℕ0 ) | 
						
							| 14 | 12 13 | ax-mp | ⊢ ( 𝓑C𝑛 ‘ ℂ )  Fn  ℕ0 | 
						
							| 15 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 16 |  | fnfvelrn | ⊢ ( ( ( 𝓑C𝑛 ‘ ℂ )  Fn  ℕ0  ∧  1  ∈  ℕ0 )  →  ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 1 )  ∈  ran  ( 𝓑C𝑛 ‘ ℂ ) ) | 
						
							| 17 | 14 15 16 | mp2an | ⊢ ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 1 )  ∈  ran  ( 𝓑C𝑛 ‘ ℂ ) | 
						
							| 18 |  | intss1 | ⊢ ( ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 1 )  ∈  ran  ( 𝓑C𝑛 ‘ ℂ )  →  ∩  ran  ( 𝓑C𝑛 ‘ ℂ )  ⊆  ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 1 ) ) | 
						
							| 19 | 17 18 | ax-mp | ⊢ ∩  ran  ( 𝓑C𝑛 ‘ ℂ )  ⊆  ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 1 ) | 
						
							| 20 |  | plycpn | ⊢ ( 𝐹  ∈  ( Poly ‘ ℤ )  →  𝐹  ∈  ∩  ran  ( 𝓑C𝑛 ‘ ℂ ) ) | 
						
							| 21 | 2 20 | syl | ⊢ ( 𝜑  →  𝐹  ∈  ∩  ran  ( 𝓑C𝑛 ‘ ℂ ) ) | 
						
							| 22 | 19 21 | sselid | ⊢ ( 𝜑  →  𝐹  ∈  ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 1 ) ) | 
						
							| 23 |  | cpnres | ⊢ ( ( ℝ  ∈  { ℝ ,  ℂ }  ∧  𝐹  ∈  ( ( 𝓑C𝑛 ‘ ℂ ) ‘ 1 ) )  →  ( 𝐹  ↾  ℝ )  ∈  ( ( 𝓑C𝑛 ‘ ℝ ) ‘ 1 ) ) | 
						
							| 24 | 11 22 23 | sylancr | ⊢ ( 𝜑  →  ( 𝐹  ↾  ℝ )  ∈  ( ( 𝓑C𝑛 ‘ ℝ ) ‘ 1 ) ) | 
						
							| 25 |  | df-ima | ⊢ ( 𝐹  “  ℝ )  =  ran  ( 𝐹  ↾  ℝ ) | 
						
							| 26 |  | zssre | ⊢ ℤ  ⊆  ℝ | 
						
							| 27 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 28 |  | plyss | ⊢ ( ( ℤ  ⊆  ℝ  ∧  ℝ  ⊆  ℂ )  →  ( Poly ‘ ℤ )  ⊆  ( Poly ‘ ℝ ) ) | 
						
							| 29 | 26 27 28 | mp2an | ⊢ ( Poly ‘ ℤ )  ⊆  ( Poly ‘ ℝ ) | 
						
							| 30 | 29 2 | sselid | ⊢ ( 𝜑  →  𝐹  ∈  ( Poly ‘ ℝ ) ) | 
						
							| 31 |  | plyreres | ⊢ ( 𝐹  ∈  ( Poly ‘ ℝ )  →  ( 𝐹  ↾  ℝ ) : ℝ ⟶ ℝ ) | 
						
							| 32 | 30 31 | syl | ⊢ ( 𝜑  →  ( 𝐹  ↾  ℝ ) : ℝ ⟶ ℝ ) | 
						
							| 33 | 32 | frnd | ⊢ ( 𝜑  →  ran  ( 𝐹  ↾  ℝ )  ⊆  ℝ ) | 
						
							| 34 | 25 33 | eqsstrid | ⊢ ( 𝜑  →  ( 𝐹  “  ℝ )  ⊆  ℝ ) | 
						
							| 35 |  | iccssre | ⊢ ( ( ( 𝐴  −  1 )  ∈  ℝ  ∧  ( 𝐴  +  1 )  ∈  ℝ )  →  ( ( 𝐴  −  1 ) [,] ( 𝐴  +  1 ) )  ⊆  ℝ ) | 
						
							| 36 | 8 10 35 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐴  −  1 ) [,] ( 𝐴  +  1 ) )  ⊆  ℝ ) | 
						
							| 37 | 36 27 | sstrdi | ⊢ ( 𝜑  →  ( ( 𝐴  −  1 ) [,] ( 𝐴  +  1 ) )  ⊆  ℂ ) | 
						
							| 38 |  | plyf | ⊢ ( 𝐹  ∈  ( Poly ‘ ℤ )  →  𝐹 : ℂ ⟶ ℂ ) | 
						
							| 39 | 2 38 | syl | ⊢ ( 𝜑  →  𝐹 : ℂ ⟶ ℂ ) | 
						
							| 40 | 39 | fdmd | ⊢ ( 𝜑  →  dom  𝐹  =  ℂ ) | 
						
							| 41 | 37 40 | sseqtrrd | ⊢ ( 𝜑  →  ( ( 𝐴  −  1 ) [,] ( 𝐴  +  1 ) )  ⊆  dom  𝐹 ) | 
						
							| 42 | 8 10 24 34 41 | c1lip3 | ⊢ ( 𝜑  →  ∃ 𝑎  ∈  ℝ ∀ 𝑏  ∈  ( ( 𝐴  −  1 ) [,] ( 𝐴  +  1 ) ) ∀ 𝑐  ∈  ( ( 𝐴  −  1 ) [,] ( 𝐴  +  1 ) ) ( abs ‘ ( ( 𝐹 ‘ 𝑐 )  −  ( 𝐹 ‘ 𝑏 ) ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝑐  −  𝑏 ) ) ) ) | 
						
							| 43 |  | simp2 | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1 )  →  𝑟  ∈  ℝ ) | 
						
							| 44 | 43 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1 )  →  𝑟  ∈  ℂ ) | 
						
							| 45 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  𝐴  ∈  ℝ ) | 
						
							| 46 | 45 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1 )  →  𝐴  ∈  ℝ ) | 
						
							| 47 | 46 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1 )  →  𝐴  ∈  ℂ ) | 
						
							| 48 | 44 47 | abssubd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1 )  →  ( abs ‘ ( 𝑟  −  𝐴 ) )  =  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) | 
						
							| 49 |  | simp3 | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1 )  →  ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1 ) | 
						
							| 50 | 48 49 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1 )  →  ( abs ‘ ( 𝑟  −  𝐴 ) )  ≤  1 ) | 
						
							| 51 |  | 1red | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1 )  →  1  ∈  ℝ ) | 
						
							| 52 |  | elicc4abs | ⊢ ( ( 𝐴  ∈  ℝ  ∧  1  ∈  ℝ  ∧  𝑟  ∈  ℝ )  →  ( 𝑟  ∈  ( ( 𝐴  −  1 ) [,] ( 𝐴  +  1 ) )  ↔  ( abs ‘ ( 𝑟  −  𝐴 ) )  ≤  1 ) ) | 
						
							| 53 | 46 51 43 52 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1 )  →  ( 𝑟  ∈  ( ( 𝐴  −  1 ) [,] ( 𝐴  +  1 ) )  ↔  ( abs ‘ ( 𝑟  −  𝐴 ) )  ≤  1 ) ) | 
						
							| 54 | 50 53 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1 )  →  𝑟  ∈  ( ( 𝐴  −  1 ) [,] ( 𝐴  +  1 ) ) ) | 
						
							| 55 | 4 | recnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 56 | 55 | subidd | ⊢ ( 𝜑  →  ( 𝐴  −  𝐴 )  =  0 ) | 
						
							| 57 | 56 | fveq2d | ⊢ ( 𝜑  →  ( abs ‘ ( 𝐴  −  𝐴 ) )  =  ( abs ‘ 0 ) ) | 
						
							| 58 |  | abs0 | ⊢ ( abs ‘ 0 )  =  0 | 
						
							| 59 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 60 | 58 59 | eqbrtri | ⊢ ( abs ‘ 0 )  ≤  1 | 
						
							| 61 | 57 60 | eqbrtrdi | ⊢ ( 𝜑  →  ( abs ‘ ( 𝐴  −  𝐴 ) )  ≤  1 ) | 
						
							| 62 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 63 |  | elicc4abs | ⊢ ( ( 𝐴  ∈  ℝ  ∧  1  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( 𝐴  ∈  ( ( 𝐴  −  1 ) [,] ( 𝐴  +  1 ) )  ↔  ( abs ‘ ( 𝐴  −  𝐴 ) )  ≤  1 ) ) | 
						
							| 64 | 4 62 4 63 | syl3anc | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( ( 𝐴  −  1 ) [,] ( 𝐴  +  1 ) )  ↔  ( abs ‘ ( 𝐴  −  𝐴 ) )  ≤  1 ) ) | 
						
							| 65 | 61 64 | mpbird | ⊢ ( 𝜑  →  𝐴  ∈  ( ( 𝐴  −  1 ) [,] ( 𝐴  +  1 ) ) ) | 
						
							| 66 | 65 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  𝐴  ∈  ( ( 𝐴  −  1 ) [,] ( 𝐴  +  1 ) ) ) | 
						
							| 67 | 66 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1 )  →  𝐴  ∈  ( ( 𝐴  −  1 ) [,] ( 𝐴  +  1 ) ) ) | 
						
							| 68 |  | fveq2 | ⊢ ( 𝑏  =  𝑟  →  ( 𝐹 ‘ 𝑏 )  =  ( 𝐹 ‘ 𝑟 ) ) | 
						
							| 69 | 68 | oveq2d | ⊢ ( 𝑏  =  𝑟  →  ( ( 𝐹 ‘ 𝑐 )  −  ( 𝐹 ‘ 𝑏 ) )  =  ( ( 𝐹 ‘ 𝑐 )  −  ( 𝐹 ‘ 𝑟 ) ) ) | 
						
							| 70 | 69 | fveq2d | ⊢ ( 𝑏  =  𝑟  →  ( abs ‘ ( ( 𝐹 ‘ 𝑐 )  −  ( 𝐹 ‘ 𝑏 ) ) )  =  ( abs ‘ ( ( 𝐹 ‘ 𝑐 )  −  ( 𝐹 ‘ 𝑟 ) ) ) ) | 
						
							| 71 |  | oveq2 | ⊢ ( 𝑏  =  𝑟  →  ( 𝑐  −  𝑏 )  =  ( 𝑐  −  𝑟 ) ) | 
						
							| 72 | 71 | fveq2d | ⊢ ( 𝑏  =  𝑟  →  ( abs ‘ ( 𝑐  −  𝑏 ) )  =  ( abs ‘ ( 𝑐  −  𝑟 ) ) ) | 
						
							| 73 | 72 | oveq2d | ⊢ ( 𝑏  =  𝑟  →  ( 𝑎  ·  ( abs ‘ ( 𝑐  −  𝑏 ) ) )  =  ( 𝑎  ·  ( abs ‘ ( 𝑐  −  𝑟 ) ) ) ) | 
						
							| 74 | 70 73 | breq12d | ⊢ ( 𝑏  =  𝑟  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑐 )  −  ( 𝐹 ‘ 𝑏 ) ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝑐  −  𝑏 ) ) )  ↔  ( abs ‘ ( ( 𝐹 ‘ 𝑐 )  −  ( 𝐹 ‘ 𝑟 ) ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝑐  −  𝑟 ) ) ) ) ) | 
						
							| 75 |  | fveq2 | ⊢ ( 𝑐  =  𝐴  →  ( 𝐹 ‘ 𝑐 )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 76 | 75 | fvoveq1d | ⊢ ( 𝑐  =  𝐴  →  ( abs ‘ ( ( 𝐹 ‘ 𝑐 )  −  ( 𝐹 ‘ 𝑟 ) ) )  =  ( abs ‘ ( ( 𝐹 ‘ 𝐴 )  −  ( 𝐹 ‘ 𝑟 ) ) ) ) | 
						
							| 77 |  | fvoveq1 | ⊢ ( 𝑐  =  𝐴  →  ( abs ‘ ( 𝑐  −  𝑟 ) )  =  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) | 
						
							| 78 | 77 | oveq2d | ⊢ ( 𝑐  =  𝐴  →  ( 𝑎  ·  ( abs ‘ ( 𝑐  −  𝑟 ) ) )  =  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) | 
						
							| 79 | 76 78 | breq12d | ⊢ ( 𝑐  =  𝐴  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝑐 )  −  ( 𝐹 ‘ 𝑟 ) ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝑐  −  𝑟 ) ) )  ↔  ( abs ‘ ( ( 𝐹 ‘ 𝐴 )  −  ( 𝐹 ‘ 𝑟 ) ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) ) | 
						
							| 80 | 74 79 | rspc2v | ⊢ ( ( 𝑟  ∈  ( ( 𝐴  −  1 ) [,] ( 𝐴  +  1 ) )  ∧  𝐴  ∈  ( ( 𝐴  −  1 ) [,] ( 𝐴  +  1 ) ) )  →  ( ∀ 𝑏  ∈  ( ( 𝐴  −  1 ) [,] ( 𝐴  +  1 ) ) ∀ 𝑐  ∈  ( ( 𝐴  −  1 ) [,] ( 𝐴  +  1 ) ) ( abs ‘ ( ( 𝐹 ‘ 𝑐 )  −  ( 𝐹 ‘ 𝑏 ) ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝑐  −  𝑏 ) ) )  →  ( abs ‘ ( ( 𝐹 ‘ 𝐴 )  −  ( 𝐹 ‘ 𝑟 ) ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) ) | 
						
							| 81 | 54 67 80 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1 )  →  ( ∀ 𝑏  ∈  ( ( 𝐴  −  1 ) [,] ( 𝐴  +  1 ) ) ∀ 𝑐  ∈  ( ( 𝐴  −  1 ) [,] ( 𝐴  +  1 ) ) ( abs ‘ ( ( 𝐹 ‘ 𝑐 )  −  ( 𝐹 ‘ 𝑏 ) ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝑐  −  𝑏 ) ) )  →  ( abs ‘ ( ( 𝐹 ‘ 𝐴 )  −  ( 𝐹 ‘ 𝑟 ) ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) ) | 
						
							| 82 |  | simp1l | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1 )  →  𝜑 ) | 
						
							| 83 | 82 5 | syl | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1 )  →  ( 𝐹 ‘ 𝐴 )  =  0 ) | 
						
							| 84 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 85 | 83 84 | eqeltrdi | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1 )  →  ( 𝐹 ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 86 | 39 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  𝐹 : ℂ ⟶ ℂ ) | 
						
							| 87 | 86 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1 )  →  𝐹 : ℂ ⟶ ℂ ) | 
						
							| 88 | 87 44 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1 )  →  ( 𝐹 ‘ 𝑟 )  ∈  ℂ ) | 
						
							| 89 | 85 88 | abssubd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1 )  →  ( abs ‘ ( ( 𝐹 ‘ 𝐴 )  −  ( 𝐹 ‘ 𝑟 ) ) )  =  ( abs ‘ ( ( 𝐹 ‘ 𝑟 )  −  ( 𝐹 ‘ 𝐴 ) ) ) ) | 
						
							| 90 | 83 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1 )  →  ( ( 𝐹 ‘ 𝑟 )  −  ( 𝐹 ‘ 𝐴 ) )  =  ( ( 𝐹 ‘ 𝑟 )  −  0 ) ) | 
						
							| 91 | 88 | subid1d | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1 )  →  ( ( 𝐹 ‘ 𝑟 )  −  0 )  =  ( 𝐹 ‘ 𝑟 ) ) | 
						
							| 92 | 90 91 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1 )  →  ( ( 𝐹 ‘ 𝑟 )  −  ( 𝐹 ‘ 𝐴 ) )  =  ( 𝐹 ‘ 𝑟 ) ) | 
						
							| 93 | 92 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1 )  →  ( abs ‘ ( ( 𝐹 ‘ 𝑟 )  −  ( 𝐹 ‘ 𝐴 ) ) )  =  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) ) | 
						
							| 94 | 89 93 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1 )  →  ( abs ‘ ( ( 𝐹 ‘ 𝐴 )  −  ( 𝐹 ‘ 𝑟 ) ) )  =  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) ) | 
						
							| 95 | 94 | breq1d | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1 )  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝐴 )  −  ( 𝐹 ‘ 𝑟 ) ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) )  ↔  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) ) | 
						
							| 96 | 81 95 | sylibd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1 )  →  ( ∀ 𝑏  ∈  ( ( 𝐴  −  1 ) [,] ( 𝐴  +  1 ) ) ∀ 𝑐  ∈  ( ( 𝐴  −  1 ) [,] ( 𝐴  +  1 ) ) ( abs ‘ ( ( 𝐹 ‘ 𝑐 )  −  ( 𝐹 ‘ 𝑏 ) ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝑐  −  𝑏 ) ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) ) | 
						
							| 97 | 96 | 3exp | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( 𝑟  ∈  ℝ  →  ( ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1  →  ( ∀ 𝑏  ∈  ( ( 𝐴  −  1 ) [,] ( 𝐴  +  1 ) ) ∀ 𝑐  ∈  ( ( 𝐴  −  1 ) [,] ( 𝐴  +  1 ) ) ( abs ‘ ( ( 𝐹 ‘ 𝑐 )  −  ( 𝐹 ‘ 𝑏 ) ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝑐  −  𝑏 ) ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) ) ) ) | 
						
							| 98 | 97 | com34 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( 𝑟  ∈  ℝ  →  ( ∀ 𝑏  ∈  ( ( 𝐴  −  1 ) [,] ( 𝐴  +  1 ) ) ∀ 𝑐  ∈  ( ( 𝐴  −  1 ) [,] ( 𝐴  +  1 ) ) ( abs ‘ ( ( 𝐹 ‘ 𝑐 )  −  ( 𝐹 ‘ 𝑏 ) ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝑐  −  𝑏 ) ) )  →  ( ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1  →  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) ) ) ) | 
						
							| 99 | 98 | com23 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( ∀ 𝑏  ∈  ( ( 𝐴  −  1 ) [,] ( 𝐴  +  1 ) ) ∀ 𝑐  ∈  ( ( 𝐴  −  1 ) [,] ( 𝐴  +  1 ) ) ( abs ‘ ( ( 𝐹 ‘ 𝑐 )  −  ( 𝐹 ‘ 𝑏 ) ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝑐  −  𝑏 ) ) )  →  ( 𝑟  ∈  ℝ  →  ( ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1  →  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) ) ) ) | 
						
							| 100 | 99 | ralrimdv | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( ∀ 𝑏  ∈  ( ( 𝐴  −  1 ) [,] ( 𝐴  +  1 ) ) ∀ 𝑐  ∈  ( ( 𝐴  −  1 ) [,] ( 𝐴  +  1 ) ) ( abs ‘ ( ( 𝐹 ‘ 𝑐 )  −  ( 𝐹 ‘ 𝑏 ) ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝑐  −  𝑏 ) ) )  →  ∀ 𝑟  ∈  ℝ ( ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1  →  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) ) ) | 
						
							| 101 | 100 | reximdva | ⊢ ( 𝜑  →  ( ∃ 𝑎  ∈  ℝ ∀ 𝑏  ∈  ( ( 𝐴  −  1 ) [,] ( 𝐴  +  1 ) ) ∀ 𝑐  ∈  ( ( 𝐴  −  1 ) [,] ( 𝐴  +  1 ) ) ( abs ‘ ( ( 𝐹 ‘ 𝑐 )  −  ( 𝐹 ‘ 𝑏 ) ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝑐  −  𝑏 ) ) )  →  ∃ 𝑎  ∈  ℝ ∀ 𝑟  ∈  ℝ ( ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1  →  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) ) ) | 
						
							| 102 | 42 101 | mpd | ⊢ ( 𝜑  →  ∃ 𝑎  ∈  ℝ ∀ 𝑟  ∈  ℝ ( ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1  →  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) ) | 
						
							| 103 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 104 | 103 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑎  =  0 )  →  1  ∈  ℝ+ ) | 
						
							| 105 |  | recn | ⊢ ( 𝑎  ∈  ℝ  →  𝑎  ∈  ℂ ) | 
						
							| 106 | 105 | adantl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  𝑎  ∈  ℂ ) | 
						
							| 107 |  | neqne | ⊢ ( ¬  𝑎  =  0  →  𝑎  ≠  0 ) | 
						
							| 108 |  | absrpcl | ⊢ ( ( 𝑎  ∈  ℂ  ∧  𝑎  ≠  0 )  →  ( abs ‘ 𝑎 )  ∈  ℝ+ ) | 
						
							| 109 | 106 107 108 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ¬  𝑎  =  0 )  →  ( abs ‘ 𝑎 )  ∈  ℝ+ ) | 
						
							| 110 | 109 | rpreccld | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ¬  𝑎  =  0 )  →  ( 1  /  ( abs ‘ 𝑎 ) )  ∈  ℝ+ ) | 
						
							| 111 | 104 110 | ifclda | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  ∈  ℝ+ ) | 
						
							| 112 |  | eqid | ⊢ if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  =  if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) ) | 
						
							| 113 |  | eqif | ⊢ ( if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  =  if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  ↔  ( ( 𝑎  =  0  ∧  if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  =  1 )  ∨  ( ¬  𝑎  =  0  ∧  if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  =  ( 1  /  ( abs ‘ 𝑎 ) ) ) ) ) | 
						
							| 114 | 112 113 | mpbi | ⊢ ( ( 𝑎  =  0  ∧  if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  =  1 )  ∨  ( ¬  𝑎  =  0  ∧  if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  =  ( 1  /  ( abs ‘ 𝑎 ) ) ) ) | 
						
							| 115 |  | simplrr | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  ∧  𝑎  =  0 )  →  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) | 
						
							| 116 |  | oveq1 | ⊢ ( 𝑎  =  0  →  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) )  =  ( 0  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) | 
						
							| 117 | 116 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  ∧  𝑎  =  0 )  →  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) )  =  ( 0  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) | 
						
							| 118 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  →  𝐴  ∈  ℝ ) | 
						
							| 119 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  →  𝑟  ∈  ℝ ) | 
						
							| 120 | 118 119 | resubcld | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  →  ( 𝐴  −  𝑟 )  ∈  ℝ ) | 
						
							| 121 | 120 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  →  ( 𝐴  −  𝑟 )  ∈  ℂ ) | 
						
							| 122 | 121 | abscld | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  →  ( abs ‘ ( 𝐴  −  𝑟 ) )  ∈  ℝ ) | 
						
							| 123 | 122 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  →  ( abs ‘ ( 𝐴  −  𝑟 ) )  ∈  ℂ ) | 
						
							| 124 | 123 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  ∧  𝑎  =  0 )  →  ( abs ‘ ( 𝐴  −  𝑟 ) )  ∈  ℂ ) | 
						
							| 125 | 124 | mul02d | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  ∧  𝑎  =  0 )  →  ( 0  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) )  =  0 ) | 
						
							| 126 | 117 125 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  ∧  𝑎  =  0 )  →  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) )  =  0 ) | 
						
							| 127 | 115 126 | breqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  ∧  𝑎  =  0 )  →  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  0 ) | 
						
							| 128 | 39 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  →  𝐹 : ℂ ⟶ ℂ ) | 
						
							| 129 | 119 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  →  𝑟  ∈  ℂ ) | 
						
							| 130 | 128 129 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  →  ( 𝐹 ‘ 𝑟 )  ∈  ℂ ) | 
						
							| 131 | 130 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  ∧  𝑎  =  0 )  →  ( 𝐹 ‘ 𝑟 )  ∈  ℂ ) | 
						
							| 132 | 131 | absge0d | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  ∧  𝑎  =  0 )  →  0  ≤  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) ) | 
						
							| 133 | 130 | abscld | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ∈  ℝ ) | 
						
							| 134 | 133 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  ∧  𝑎  =  0 )  →  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ∈  ℝ ) | 
						
							| 135 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 136 |  | letri3 | ⊢ ( ( ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ∈  ℝ  ∧  0  ∈  ℝ )  →  ( ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  =  0  ↔  ( ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  0  ∧  0  ≤  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) ) ) ) | 
						
							| 137 | 134 135 136 | sylancl | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  ∧  𝑎  =  0 )  →  ( ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  =  0  ↔  ( ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  0  ∧  0  ≤  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) ) ) ) | 
						
							| 138 | 127 132 137 | mpbir2and | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  ∧  𝑎  =  0 )  →  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  =  0 ) | 
						
							| 139 | 138 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  ∧  𝑎  =  0 )  →  ( 1  ·  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) )  =  ( 1  ·  0 ) ) | 
						
							| 140 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 141 | 140 | mul01i | ⊢ ( 1  ·  0 )  =  0 | 
						
							| 142 | 139 141 | eqtrdi | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  ∧  𝑎  =  0 )  →  ( 1  ·  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) )  =  0 ) | 
						
							| 143 | 121 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  ∧  𝑎  =  0 )  →  ( 𝐴  −  𝑟 )  ∈  ℂ ) | 
						
							| 144 | 143 | absge0d | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  ∧  𝑎  =  0 )  →  0  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) | 
						
							| 145 | 142 144 | eqbrtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  ∧  𝑎  =  0 )  →  ( 1  ·  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) )  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) | 
						
							| 146 |  | oveq1 | ⊢ ( if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  =  1  →  ( if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  ·  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) )  =  ( 1  ·  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) ) ) | 
						
							| 147 | 146 | breq1d | ⊢ ( if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  =  1  →  ( ( if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  ·  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) )  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) )  ↔  ( 1  ·  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) )  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) | 
						
							| 148 | 145 147 | syl5ibrcom | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  ∧  𝑎  =  0 )  →  ( if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  =  1  →  ( if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  ·  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) )  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) | 
						
							| 149 | 148 | expimpd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  →  ( ( 𝑎  =  0  ∧  if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  =  1 )  →  ( if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  ·  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) )  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) | 
						
							| 150 |  | df-ne | ⊢ ( 𝑎  ≠  0  ↔  ¬  𝑎  =  0 ) | 
						
							| 151 | 133 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  ∧  𝑎  ≠  0 )  →  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ∈  ℝ ) | 
						
							| 152 | 151 | recnd | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  ∧  𝑎  ≠  0 )  →  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ∈  ℂ ) | 
						
							| 153 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  ∧  𝑎  ≠  0 )  →  𝑎  ∈  ℝ ) | 
						
							| 154 | 153 | recnd | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  ∧  𝑎  ≠  0 )  →  𝑎  ∈  ℂ ) | 
						
							| 155 | 154 108 | sylancom | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  ∧  𝑎  ≠  0 )  →  ( abs ‘ 𝑎 )  ∈  ℝ+ ) | 
						
							| 156 | 155 | rpcnne0d | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  ∧  𝑎  ≠  0 )  →  ( ( abs ‘ 𝑎 )  ∈  ℂ  ∧  ( abs ‘ 𝑎 )  ≠  0 ) ) | 
						
							| 157 |  | divrec2 | ⊢ ( ( ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ∈  ℂ  ∧  ( abs ‘ 𝑎 )  ∈  ℂ  ∧  ( abs ‘ 𝑎 )  ≠  0 )  →  ( ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  /  ( abs ‘ 𝑎 ) )  =  ( ( 1  /  ( abs ‘ 𝑎 ) )  ·  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) ) ) | 
						
							| 158 | 157 | 3expb | ⊢ ( ( ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ∈  ℂ  ∧  ( ( abs ‘ 𝑎 )  ∈  ℂ  ∧  ( abs ‘ 𝑎 )  ≠  0 ) )  →  ( ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  /  ( abs ‘ 𝑎 ) )  =  ( ( 1  /  ( abs ‘ 𝑎 ) )  ·  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) ) ) | 
						
							| 159 | 152 156 158 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  ∧  𝑎  ≠  0 )  →  ( ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  /  ( abs ‘ 𝑎 ) )  =  ( ( 1  /  ( abs ‘ 𝑎 ) )  ·  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) ) ) | 
						
							| 160 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  →  𝑎  ∈  ℝ ) | 
						
							| 161 | 160 122 | remulcld | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  →  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) )  ∈  ℝ ) | 
						
							| 162 | 160 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  →  𝑎  ∈  ℂ ) | 
						
							| 163 | 162 | abscld | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  →  ( abs ‘ 𝑎 )  ∈  ℝ ) | 
						
							| 164 | 163 122 | remulcld | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  →  ( ( abs ‘ 𝑎 )  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) )  ∈  ℝ ) | 
						
							| 165 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) | 
						
							| 166 | 121 | absge0d | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  →  0  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) | 
						
							| 167 |  | leabs | ⊢ ( 𝑎  ∈  ℝ  →  𝑎  ≤  ( abs ‘ 𝑎 ) ) | 
						
							| 168 | 167 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  →  𝑎  ≤  ( abs ‘ 𝑎 ) ) | 
						
							| 169 | 160 163 122 166 168 | lemul1ad | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  →  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) )  ≤  ( ( abs ‘ 𝑎 )  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) | 
						
							| 170 | 133 161 164 165 169 | letrd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( ( abs ‘ 𝑎 )  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) | 
						
							| 171 | 170 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  ∧  𝑎  ≠  0 )  →  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( ( abs ‘ 𝑎 )  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) | 
						
							| 172 | 122 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  ∧  𝑎  ≠  0 )  →  ( abs ‘ ( 𝐴  −  𝑟 ) )  ∈  ℝ ) | 
						
							| 173 | 151 172 155 | ledivmuld | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  ∧  𝑎  ≠  0 )  →  ( ( ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  /  ( abs ‘ 𝑎 ) )  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) )  ↔  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( ( abs ‘ 𝑎 )  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) ) | 
						
							| 174 | 171 173 | mpbird | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  ∧  𝑎  ≠  0 )  →  ( ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  /  ( abs ‘ 𝑎 ) )  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) | 
						
							| 175 | 159 174 | eqbrtrrd | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  ∧  𝑎  ≠  0 )  →  ( ( 1  /  ( abs ‘ 𝑎 ) )  ·  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) )  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) | 
						
							| 176 | 150 175 | sylan2br | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  ∧  ¬  𝑎  =  0 )  →  ( ( 1  /  ( abs ‘ 𝑎 ) )  ·  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) )  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) | 
						
							| 177 |  | oveq1 | ⊢ ( if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  =  ( 1  /  ( abs ‘ 𝑎 ) )  →  ( if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  ·  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) )  =  ( ( 1  /  ( abs ‘ 𝑎 ) )  ·  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) ) ) | 
						
							| 178 | 177 | breq1d | ⊢ ( if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  =  ( 1  /  ( abs ‘ 𝑎 ) )  →  ( ( if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  ·  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) )  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) )  ↔  ( ( 1  /  ( abs ‘ 𝑎 ) )  ·  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) )  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) | 
						
							| 179 | 176 178 | syl5ibrcom | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  ∧  ¬  𝑎  =  0 )  →  ( if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  =  ( 1  /  ( abs ‘ 𝑎 ) )  →  ( if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  ·  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) )  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) | 
						
							| 180 | 179 | expimpd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  →  ( ( ¬  𝑎  =  0  ∧  if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  =  ( 1  /  ( abs ‘ 𝑎 ) ) )  →  ( if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  ·  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) )  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) | 
						
							| 181 | 149 180 | jaod | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  →  ( ( ( 𝑎  =  0  ∧  if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  =  1 )  ∨  ( ¬  𝑎  =  0  ∧  if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  =  ( 1  /  ( abs ‘ 𝑎 ) ) ) )  →  ( if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  ·  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) )  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) | 
						
							| 182 | 114 181 | mpi | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑟  ∈  ℝ  ∧  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) )  →  ( if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  ·  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) )  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) | 
						
							| 183 | 182 | expr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑟  ∈  ℝ )  →  ( ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) )  →  ( if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  ·  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) )  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) | 
						
							| 184 | 183 | imim2d | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ℝ )  ∧  𝑟  ∈  ℝ )  →  ( ( ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1  →  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) )  →  ( ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1  →  ( if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  ·  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) )  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) ) | 
						
							| 185 | 184 | ralimdva | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( ∀ 𝑟  ∈  ℝ ( ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1  →  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) )  →  ∀ 𝑟  ∈  ℝ ( ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1  →  ( if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  ·  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) )  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) ) | 
						
							| 186 |  | oveq1 | ⊢ ( 𝑥  =  if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  →  ( 𝑥  ·  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) )  =  ( if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  ·  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) ) ) | 
						
							| 187 | 186 | breq1d | ⊢ ( 𝑥  =  if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  →  ( ( 𝑥  ·  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) )  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) )  ↔  ( if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  ·  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) )  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) | 
						
							| 188 | 187 | imbi2d | ⊢ ( 𝑥  =  if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  →  ( ( ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1  →  ( 𝑥  ·  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) )  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) )  ↔  ( ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1  →  ( if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  ·  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) )  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) ) | 
						
							| 189 | 188 | ralbidv | ⊢ ( 𝑥  =  if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  →  ( ∀ 𝑟  ∈  ℝ ( ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1  →  ( 𝑥  ·  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) )  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) )  ↔  ∀ 𝑟  ∈  ℝ ( ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1  →  ( if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  ·  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) )  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) ) | 
						
							| 190 | 189 | rspcev | ⊢ ( ( if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  ∈  ℝ+  ∧  ∀ 𝑟  ∈  ℝ ( ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1  →  ( if ( 𝑎  =  0 ,  1 ,  ( 1  /  ( abs ‘ 𝑎 ) ) )  ·  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) )  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) )  →  ∃ 𝑥  ∈  ℝ+ ∀ 𝑟  ∈  ℝ ( ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1  →  ( 𝑥  ·  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) )  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) | 
						
							| 191 | 111 185 190 | syl6an | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℝ )  →  ( ∀ 𝑟  ∈  ℝ ( ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1  →  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) )  →  ∃ 𝑥  ∈  ℝ+ ∀ 𝑟  ∈  ℝ ( ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1  →  ( 𝑥  ·  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) )  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) ) | 
						
							| 192 | 191 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑎  ∈  ℝ ∀ 𝑟  ∈  ℝ ( ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1  →  ( abs ‘ ( 𝐹 ‘ 𝑟 ) )  ≤  ( 𝑎  ·  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) )  →  ∃ 𝑥  ∈  ℝ+ ∀ 𝑟  ∈  ℝ ( ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1  →  ( 𝑥  ·  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) )  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) ) | 
						
							| 193 | 102 192 | mpd | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ+ ∀ 𝑟  ∈  ℝ ( ( abs ‘ ( 𝐴  −  𝑟 ) )  ≤  1  →  ( 𝑥  ·  ( abs ‘ ( 𝐹 ‘ 𝑟 ) ) )  ≤  ( abs ‘ ( 𝐴  −  𝑟 ) ) ) ) |