| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rolle.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
rolle.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
rolle.lt |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
| 4 |
|
rolle.f |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 5 |
|
rolle.d |
⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) |
| 6 |
|
rolle.e |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) ) |
| 7 |
1 2 3
|
ltled |
⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| 8 |
1 2 7 4
|
evthicc |
⊢ ( 𝜑 → ( ∃ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ∃ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 9 |
|
reeanv |
⊢ ( ∃ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∃ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ↔ ( ∃ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ∃ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 10 |
8 9
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∃ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 11 |
|
r19.26 |
⊢ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ↔ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 12 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ 𝑢 ∈ { 𝐴 , 𝐵 } ) ) → 𝐴 ∈ ℝ ) |
| 13 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ 𝑢 ∈ { 𝐴 , 𝐵 } ) ) → 𝐵 ∈ ℝ ) |
| 14 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ 𝑢 ∈ { 𝐴 , 𝐵 } ) ) → 𝐴 < 𝐵 ) |
| 15 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ 𝑢 ∈ { 𝐴 , 𝐵 } ) ) → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 16 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ 𝑢 ∈ { 𝐴 , 𝐵 } ) ) → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) |
| 17 |
|
simpl |
⊢ ( ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) → ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ) |
| 18 |
17
|
ralimi |
⊢ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ) |
| 19 |
|
fveq2 |
⊢ ( 𝑦 = 𝑡 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑡 ) ) |
| 20 |
19
|
breq1d |
⊢ ( 𝑦 = 𝑡 → ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ↔ ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑢 ) ) ) |
| 21 |
20
|
cbvralvw |
⊢ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ↔ ∀ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑢 ) ) |
| 22 |
18 21
|
sylib |
⊢ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑢 ) ) |
| 23 |
22
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ 𝑢 ∈ { 𝐴 , 𝐵 } ) ) → ∀ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑡 ) ≤ ( 𝐹 ‘ 𝑢 ) ) |
| 24 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ 𝑢 ∈ { 𝐴 , 𝐵 } ) ) → 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 25 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ 𝑢 ∈ { 𝐴 , 𝐵 } ) ) → ¬ 𝑢 ∈ { 𝐴 , 𝐵 } ) |
| 26 |
12 13 14 15 16 23 24 25
|
rollelem |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ 𝑢 ∈ { 𝐴 , 𝐵 } ) ) → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) |
| 27 |
26
|
expr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) → ( ¬ 𝑢 ∈ { 𝐴 , 𝐵 } → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) ) |
| 28 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ 𝑣 ∈ { 𝐴 , 𝐵 } ) ) → 𝐴 ∈ ℝ ) |
| 29 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ 𝑣 ∈ { 𝐴 , 𝐵 } ) ) → 𝐵 ∈ ℝ ) |
| 30 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ 𝑣 ∈ { 𝐴 , 𝐵 } ) ) → 𝐴 < 𝐵 ) |
| 31 |
|
cncff |
⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 32 |
4 31
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 33 |
32
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑢 ) ∈ ℝ ) |
| 34 |
33
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) → - ( 𝐹 ‘ 𝑢 ) ∈ ℝ ) |
| 35 |
34
|
fmpttd |
⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 36 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 37 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 38 |
|
cncfss |
⊢ ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ⊆ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 39 |
36 37 38
|
mp2an |
⊢ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ⊆ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) |
| 40 |
39 4
|
sselid |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 41 |
|
eqid |
⊢ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) = ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) |
| 42 |
41
|
negfcncf |
⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) → ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 43 |
40 42
|
syl |
⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 44 |
|
cncfcdm |
⊢ ( ( ℝ ⊆ ℂ ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ↔ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) ) |
| 45 |
36 43 44
|
sylancr |
⊢ ( 𝜑 → ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ↔ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) ) |
| 46 |
35 45
|
mpbird |
⊢ ( 𝜑 → ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 47 |
46
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ 𝑣 ∈ { 𝐴 , 𝐵 } ) ) → ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 48 |
36
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 49 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 50 |
1 2 49
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 51 |
|
fss |
⊢ ( ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 52 |
32 36 51
|
sylancl |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
| 53 |
52
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑢 ) ∈ ℂ ) |
| 54 |
53
|
negcld |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) → - ( 𝐹 ‘ 𝑢 ) ∈ ℂ ) |
| 55 |
|
tgioo4 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 56 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 57 |
|
iccntr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 58 |
1 2 57
|
syl2anc |
⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 59 |
48 50 54 55 56 58
|
dvmptntr |
⊢ ( 𝜑 → ( ℝ D ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ) = ( ℝ D ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ) ) |
| 60 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
| 61 |
60
|
a1i |
⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
| 62 |
|
ioossicc |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) |
| 63 |
62
|
sseli |
⊢ ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) → 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 64 |
63 53
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ 𝑢 ) ∈ ℂ ) |
| 65 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑢 ) ∈ V ) |
| 66 |
32
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐹 ‘ 𝑢 ) ) ) |
| 67 |
66
|
oveq2d |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) = ( ℝ D ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐹 ‘ 𝑢 ) ) ) ) |
| 68 |
|
dvf |
⊢ ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ |
| 69 |
5
|
feq2d |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ ↔ ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) ) |
| 70 |
68 69
|
mpbii |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℂ ) |
| 71 |
70
|
feqmptd |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) = ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑢 ) ) ) |
| 72 |
48 50 53 55 56 58
|
dvmptntr |
⊢ ( 𝜑 → ( ℝ D ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐹 ‘ 𝑢 ) ) ) = ( ℝ D ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑢 ) ) ) ) |
| 73 |
67 71 72
|
3eqtr3rd |
⊢ ( 𝜑 → ( ℝ D ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ 𝑢 ) ) ) = ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D 𝐹 ) ‘ 𝑢 ) ) ) |
| 74 |
61 64 65 73
|
dvmptneg |
⊢ ( 𝜑 → ( ℝ D ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ) = ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑢 ) ) ) |
| 75 |
59 74
|
eqtrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ) = ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑢 ) ) ) |
| 76 |
75
|
dmeqd |
⊢ ( 𝜑 → dom ( ℝ D ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ) = dom ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑢 ) ) ) |
| 77 |
|
dmmptg |
⊢ ( ∀ 𝑢 ∈ ( 𝐴 (,) 𝐵 ) - ( ( ℝ D 𝐹 ) ‘ 𝑢 ) ∈ V → dom ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑢 ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 78 |
|
negex |
⊢ - ( ( ℝ D 𝐹 ) ‘ 𝑢 ) ∈ V |
| 79 |
78
|
a1i |
⊢ ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) → - ( ( ℝ D 𝐹 ) ‘ 𝑢 ) ∈ V ) |
| 80 |
77 79
|
mprg |
⊢ dom ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑢 ) ) = ( 𝐴 (,) 𝐵 ) |
| 81 |
76 80
|
eqtrdi |
⊢ ( 𝜑 → dom ( ℝ D ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 82 |
81
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ 𝑣 ∈ { 𝐴 , 𝐵 } ) ) → dom ( ℝ D ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 83 |
|
simpr |
⊢ ( ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) → ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |
| 84 |
32
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 85 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 86 |
84 85
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑣 ) ∈ ℝ ) |
| 87 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 88 |
87
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 89 |
86 88
|
lenegd |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ↔ - ( 𝐹 ‘ 𝑦 ) ≤ - ( 𝐹 ‘ 𝑣 ) ) ) |
| 90 |
|
fveq2 |
⊢ ( 𝑢 = 𝑦 → ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 91 |
90
|
negeqd |
⊢ ( 𝑢 = 𝑦 → - ( 𝐹 ‘ 𝑢 ) = - ( 𝐹 ‘ 𝑦 ) ) |
| 92 |
|
negex |
⊢ - ( 𝐹 ‘ 𝑦 ) ∈ V |
| 93 |
91 41 92
|
fvmpt |
⊢ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑦 ) = - ( 𝐹 ‘ 𝑦 ) ) |
| 94 |
93
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑦 ) = - ( 𝐹 ‘ 𝑦 ) ) |
| 95 |
|
fveq2 |
⊢ ( 𝑢 = 𝑣 → ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) ) |
| 96 |
95
|
negeqd |
⊢ ( 𝑢 = 𝑣 → - ( 𝐹 ‘ 𝑢 ) = - ( 𝐹 ‘ 𝑣 ) ) |
| 97 |
|
negex |
⊢ - ( 𝐹 ‘ 𝑣 ) ∈ V |
| 98 |
96 41 97
|
fvmpt |
⊢ ( 𝑣 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑣 ) = - ( 𝐹 ‘ 𝑣 ) ) |
| 99 |
85 98
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑣 ) = - ( 𝐹 ‘ 𝑣 ) ) |
| 100 |
94 99
|
breq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑦 ) ≤ ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑣 ) ↔ - ( 𝐹 ‘ 𝑦 ) ≤ - ( 𝐹 ‘ 𝑣 ) ) ) |
| 101 |
89 100
|
bitr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ↔ ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑦 ) ≤ ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑣 ) ) ) |
| 102 |
83 101
|
imbitrid |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) → ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑦 ) ≤ ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑣 ) ) ) |
| 103 |
102
|
ralimdva |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑦 ) ≤ ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑣 ) ) ) |
| 104 |
103
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) → ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑦 ) ≤ ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑣 ) ) |
| 105 |
|
fveq2 |
⊢ ( 𝑦 = 𝑡 → ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑦 ) = ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑡 ) ) |
| 106 |
105
|
breq1d |
⊢ ( 𝑦 = 𝑡 → ( ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑦 ) ≤ ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑣 ) ↔ ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑡 ) ≤ ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑣 ) ) ) |
| 107 |
106
|
cbvralvw |
⊢ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑦 ) ≤ ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑣 ) ↔ ∀ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑡 ) ≤ ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑣 ) ) |
| 108 |
104 107
|
sylib |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) → ∀ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑡 ) ≤ ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑣 ) ) |
| 109 |
108
|
adantrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ 𝑣 ∈ { 𝐴 , 𝐵 } ) ) → ∀ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑡 ) ≤ ( ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ‘ 𝑣 ) ) |
| 110 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ 𝑣 ∈ { 𝐴 , 𝐵 } ) ) → 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 111 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ 𝑣 ∈ { 𝐴 , 𝐵 } ) ) → ¬ 𝑣 ∈ { 𝐴 , 𝐵 } ) |
| 112 |
28 29 30 47 82 109 110 111
|
rollelem |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ 𝑣 ∈ { 𝐴 , 𝐵 } ) ) → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ) ‘ 𝑥 ) = 0 ) |
| 113 |
75
|
fveq1d |
⊢ ( 𝜑 → ( ( ℝ D ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ) ‘ 𝑥 ) = ( ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑢 ) ) ‘ 𝑥 ) ) |
| 114 |
|
fveq2 |
⊢ ( 𝑢 = 𝑥 → ( ( ℝ D 𝐹 ) ‘ 𝑢 ) = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
| 115 |
114
|
negeqd |
⊢ ( 𝑢 = 𝑥 → - ( ( ℝ D 𝐹 ) ‘ 𝑢 ) = - ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
| 116 |
|
eqid |
⊢ ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑢 ) ) = ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑢 ) ) |
| 117 |
|
negex |
⊢ - ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ V |
| 118 |
115 116 117
|
fvmpt |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ( ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ - ( ( ℝ D 𝐹 ) ‘ 𝑢 ) ) ‘ 𝑥 ) = - ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
| 119 |
113 118
|
sylan9eq |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ) ‘ 𝑥 ) = - ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
| 120 |
119
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( ℝ D ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ) ‘ 𝑥 ) = 0 ↔ - ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) ) |
| 121 |
5
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ dom ( ℝ D 𝐹 ) ↔ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) ) |
| 122 |
121
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ dom ( ℝ D 𝐹 ) ) |
| 123 |
68
|
ffvelcdmi |
⊢ ( 𝑥 ∈ dom ( ℝ D 𝐹 ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
| 124 |
122 123
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
| 125 |
124
|
negeq0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ↔ - ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) ) |
| 126 |
120 125
|
bitr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( ℝ D ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ) ‘ 𝑥 ) = 0 ↔ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) ) |
| 127 |
126
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ) ‘ 𝑥 ) = 0 ↔ ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) ) |
| 128 |
127
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ 𝑣 ∈ { 𝐴 , 𝐵 } ) ) → ( ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ - ( 𝐹 ‘ 𝑢 ) ) ) ‘ 𝑥 ) = 0 ↔ ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) ) |
| 129 |
112 128
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ∧ ¬ 𝑣 ∈ { 𝐴 , 𝐵 } ) ) → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) |
| 130 |
129
|
expr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) → ( ¬ 𝑣 ∈ { 𝐴 , 𝐵 } → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) ) |
| 131 |
|
vex |
⊢ 𝑢 ∈ V |
| 132 |
131
|
elpr |
⊢ ( 𝑢 ∈ { 𝐴 , 𝐵 } ↔ ( 𝑢 = 𝐴 ∨ 𝑢 = 𝐵 ) ) |
| 133 |
|
fveq2 |
⊢ ( 𝑢 = 𝐴 → ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 134 |
133
|
a1i |
⊢ ( 𝜑 → ( 𝑢 = 𝐴 → ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) ) ) |
| 135 |
6
|
eqcomd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 136 |
|
fveqeq2 |
⊢ ( 𝑢 = 𝐵 → ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) ↔ ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐴 ) ) ) |
| 137 |
135 136
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑢 = 𝐵 → ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) ) ) |
| 138 |
134 137
|
jaod |
⊢ ( 𝜑 → ( ( 𝑢 = 𝐴 ∨ 𝑢 = 𝐵 ) → ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) ) ) |
| 139 |
132 138
|
biimtrid |
⊢ ( 𝜑 → ( 𝑢 ∈ { 𝐴 , 𝐵 } → ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) ) ) |
| 140 |
|
eleq1w |
⊢ ( 𝑢 = 𝑣 → ( 𝑢 ∈ { 𝐴 , 𝐵 } ↔ 𝑣 ∈ { 𝐴 , 𝐵 } ) ) |
| 141 |
|
fveqeq2 |
⊢ ( 𝑢 = 𝑣 → ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) ↔ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝐴 ) ) ) |
| 142 |
140 141
|
imbi12d |
⊢ ( 𝑢 = 𝑣 → ( ( 𝑢 ∈ { 𝐴 , 𝐵 } → ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) ) ↔ ( 𝑣 ∈ { 𝐴 , 𝐵 } → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 143 |
142
|
imbi2d |
⊢ ( 𝑢 = 𝑣 → ( ( 𝜑 → ( 𝑢 ∈ { 𝐴 , 𝐵 } → ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) ) ) ↔ ( 𝜑 → ( 𝑣 ∈ { 𝐴 , 𝐵 } → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝐴 ) ) ) ) ) |
| 144 |
143 139
|
chvarvv |
⊢ ( 𝜑 → ( 𝑣 ∈ { 𝐴 , 𝐵 } → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝐴 ) ) ) |
| 145 |
139 144
|
anim12d |
⊢ ( 𝜑 → ( ( 𝑢 ∈ { 𝐴 , 𝐵 } ∧ 𝑣 ∈ { 𝐴 , 𝐵 } ) → ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) ∧ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 146 |
145
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) → ( ( 𝑢 ∈ { 𝐴 , 𝐵 } ∧ 𝑣 ∈ { 𝐴 , 𝐵 } ) → ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) ∧ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 147 |
1
|
rexrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 148 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 149 |
|
lbicc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 150 |
147 148 7 149
|
syl3anc |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 151 |
32 150
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ℝ ) |
| 152 |
151
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ℝ ) |
| 153 |
88 152
|
letri3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ↔ ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝐴 ) ∧ ( 𝐹 ‘ 𝐴 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 154 |
|
breq2 |
⊢ ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) → ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ↔ ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝐴 ) ) ) |
| 155 |
|
breq1 |
⊢ ( ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝐴 ) → ( ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝐴 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 156 |
154 155
|
bi2anan9 |
⊢ ( ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) ∧ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝐴 ) ) → ( ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝐴 ) ∧ ( 𝐹 ‘ 𝐴 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 157 |
156
|
bibi2d |
⊢ ( ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) ∧ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝐴 ) ) → ( ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ↔ ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ↔ ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝐴 ) ∧ ( 𝐹 ‘ 𝐴 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 158 |
153 157
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) ∧ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ↔ ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 159 |
158
|
impancom |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) ∧ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝐴 ) ) ) → ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ↔ ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 160 |
159
|
imp |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) ∧ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝐴 ) ) ) ∧ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ↔ ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 161 |
160
|
ralbidva |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) ∧ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝐴 ) ) ) → ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ↔ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 162 |
32
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ( 𝐴 [,] 𝐵 ) ) |
| 163 |
|
fnconstg |
⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ℝ → ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) Fn ( 𝐴 [,] 𝐵 ) ) |
| 164 |
151 163
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) Fn ( 𝐴 [,] 𝐵 ) ) |
| 165 |
|
eqfnfv |
⊢ ( ( 𝐹 Fn ( 𝐴 [,] 𝐵 ) ∧ ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) Fn ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 = ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) ↔ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) = ( ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) ‘ 𝑦 ) ) ) |
| 166 |
162 164 165
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 = ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) ↔ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) = ( ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) ‘ 𝑦 ) ) ) |
| 167 |
|
fvex |
⊢ ( 𝐹 ‘ 𝐴 ) ∈ V |
| 168 |
167
|
fvconst2 |
⊢ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) → ( ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 169 |
168
|
eqeq2d |
⊢ ( 𝑦 ∈ ( 𝐴 [,] 𝐵 ) → ( ( 𝐹 ‘ 𝑦 ) = ( ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ) ) |
| 170 |
169
|
ralbiia |
⊢ ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) = ( ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ) |
| 171 |
166 170
|
bitrdi |
⊢ ( 𝜑 → ( 𝐹 = ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) ↔ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) ) ) |
| 172 |
|
ioon0 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 (,) 𝐵 ) ≠ ∅ ↔ 𝐴 < 𝐵 ) ) |
| 173 |
147 148 172
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 (,) 𝐵 ) ≠ ∅ ↔ 𝐴 < 𝐵 ) ) |
| 174 |
3 173
|
mpbird |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ≠ ∅ ) |
| 175 |
|
fconstmpt |
⊢ ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) = ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐹 ‘ 𝐴 ) ) |
| 176 |
175
|
eqeq2i |
⊢ ( 𝐹 = ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) ↔ 𝐹 = ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐹 ‘ 𝐴 ) ) ) |
| 177 |
176
|
biimpi |
⊢ ( 𝐹 = ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) → 𝐹 = ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐹 ‘ 𝐴 ) ) ) |
| 178 |
177
|
oveq2d |
⊢ ( 𝐹 = ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) → ( ℝ D 𝐹 ) = ( ℝ D ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 179 |
151
|
recnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ℂ ) |
| 180 |
179
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ℝ ) → ( 𝐹 ‘ 𝐴 ) ∈ ℂ ) |
| 181 |
|
0cnd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ℝ ) → 0 ∈ ℂ ) |
| 182 |
61 179
|
dvmptc |
⊢ ( 𝜑 → ( ℝ D ( 𝑢 ∈ ℝ ↦ ( 𝐹 ‘ 𝐴 ) ) ) = ( 𝑢 ∈ ℝ ↦ 0 ) ) |
| 183 |
61 180 181 182 50 55 56 58
|
dvmptres2 |
⊢ ( 𝜑 → ( ℝ D ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝐹 ‘ 𝐴 ) ) ) = ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ 0 ) ) |
| 184 |
178 183
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝐹 = ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) ) → ( ℝ D 𝐹 ) = ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ 0 ) ) |
| 185 |
184
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝐹 = ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = ( ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ 0 ) ‘ 𝑥 ) ) |
| 186 |
|
eqidd |
⊢ ( 𝑢 = 𝑥 → 0 = 0 ) |
| 187 |
|
eqid |
⊢ ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ 0 ) = ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ 0 ) |
| 188 |
|
c0ex |
⊢ 0 ∈ V |
| 189 |
186 187 188
|
fvmpt |
⊢ ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) → ( ( 𝑢 ∈ ( 𝐴 (,) 𝐵 ) ↦ 0 ) ‘ 𝑥 ) = 0 ) |
| 190 |
185 189
|
sylan9eq |
⊢ ( ( ( 𝜑 ∧ 𝐹 = ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) ) ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) |
| 191 |
190
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝐹 = ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) ) → ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) |
| 192 |
|
r19.2z |
⊢ ( ( ( 𝐴 (,) 𝐵 ) ≠ ∅ ∧ ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) |
| 193 |
174 191 192
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝐹 = ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) ) → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) |
| 194 |
193
|
ex |
⊢ ( 𝜑 → ( 𝐹 = ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) ) |
| 195 |
171 194
|
sylbird |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) ) |
| 196 |
195
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) ∧ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝐴 ) ) ) → ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝐴 ) → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) ) |
| 197 |
161 196
|
sylbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) ∧ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝐴 ) ) ) → ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) ) |
| 198 |
197
|
impancom |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) → ( ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝐴 ) ∧ ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝐴 ) ) → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) ) |
| 199 |
146 198
|
syld |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) → ( ( 𝑢 ∈ { 𝐴 , 𝐵 } ∧ 𝑣 ∈ { 𝐴 , 𝐵 } ) → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) ) |
| 200 |
27 130 199
|
ecased |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) |
| 201 |
200
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) ) |
| 202 |
11 201
|
biimtrrid |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) ) |
| 203 |
202
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑢 ∈ ( 𝐴 [,] 𝐵 ) ∃ 𝑣 ∈ ( 𝐴 [,] 𝐵 ) ( ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑢 ) ∧ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( 𝐹 ‘ 𝑣 ) ≤ ( 𝐹 ‘ 𝑦 ) ) → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) ) |
| 204 |
10 203
|
mpd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) = 0 ) |