Metamath Proof Explorer


Theorem ablfac1b

Description: Any abelian group is the direct product of factors of prime power order (with the exact order further matching the prime factorization of the group order). (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses ablfac1.b B=BaseG
ablfac1.o O=odG
ablfac1.s S=pAxB|OxpppCntB
ablfac1.g φGAbel
ablfac1.f φBFin
ablfac1.1 φA
Assertion ablfac1b φGdomDProdS

Proof

Step Hyp Ref Expression
1 ablfac1.b B=BaseG
2 ablfac1.o O=odG
3 ablfac1.s S=pAxB|OxpppCntB
4 ablfac1.g φGAbel
5 ablfac1.f φBFin
6 ablfac1.1 φA
7 eqid CntzG=CntzG
8 eqid 0G=0G
9 eqid mrClsSubGrpG=mrClsSubGrpG
10 ablgrp GAbelGGrp
11 4 10 syl φGGrp
12 prmex V
13 12 ssex AAV
14 6 13 syl φAV
15 4 adantr φpAGAbel
16 6 sselda φpAp
17 prmnn pp
18 16 17 syl φpAp
19 1 grpbn0 GGrpB
20 11 19 syl φB
21 hashnncl BFinBB
22 5 21 syl φBB
23 20 22 mpbird φB
24 23 adantr φpAB
25 16 24 pccld φpAppCntB0
26 18 25 nnexpcld φpApppCntB
27 26 nnzd φpApppCntB
28 2 1 oddvdssubg GAbelpppCntBxB|OxpppCntBSubGrpG
29 15 27 28 syl2anc φpAxB|OxpppCntBSubGrpG
30 29 3 fmptd φS:ASubGrpG
31 4 adantr φaAbAabGAbel
32 30 adantr φaAbAabS:ASubGrpG
33 simpr1 φaAbAabaA
34 32 33 ffvelcdmd φaAbAabSaSubGrpG
35 simpr2 φaAbAabbA
36 32 35 ffvelcdmd φaAbAabSbSubGrpG
37 7 31 34 36 ablcntzd φaAbAabSaCntzGSb
38 id p=ap=a
39 oveq1 p=appCntB=apCntB
40 38 39 oveq12d p=apppCntB=aapCntB
41 40 breq2d p=aOxpppCntBOxaapCntB
42 41 rabbidv p=axB|OxpppCntB=xB|OxaapCntB
43 1 fvexi BV
44 43 rabex xB|OxpppCntBV
45 42 3 44 fvmpt3i aASa=xB|OxaapCntB
46 45 adantl φaASa=xB|OxaapCntB
47 eqimss Sa=xB|OxaapCntBSaxB|OxaapCntB
48 46 47 syl φaASaxB|OxaapCntB
49 4 adantr φaAGAbel
50 eqid BaseG=BaseG
51 50 subgacs GGrpSubGrpGACSBaseG
52 acsmre SubGrpGACSBaseGSubGrpGMooreBaseG
53 49 10 51 52 4syl φaASubGrpGMooreBaseG
54 df-ima SAa=ranSAa
55 6 sselda φaAa
56 55 ad2antrr φaApAaxBa
57 23 ad3antrrr φaApAaxBB
58 pcdvds aBaapCntBB
59 56 57 58 syl2anc φaApAaxBaapCntBB
60 6 ad3antrrr φaApAaxBA
61 eldifi pAapA
62 61 ad2antlr φaApAaxBpA
63 60 62 sseldd φaApAaxBp
64 pcdvds pBpppCntBB
65 63 57 64 syl2anc φaApAaxBpppCntBB
66 eqid aapCntB=aapCntB
67 eqid BaapCntB=BaapCntB
68 1 2 3 4 5 6 66 67 ablfac1lem φaAaapCntBBaapCntBaapCntBgcdBaapCntB=1B=aapCntBBaapCntB
69 68 simp1d φaAaapCntBBaapCntB
70 69 simpld φaAaapCntB
71 70 ad2antrr φaApAaxBaapCntB
72 71 nnzd φaApAaxBaapCntB
73 63 17 syl φaApAaxBp
74 63 57 pccld φaApAaxBppCntB0
75 73 74 nnexpcld φaApAaxBpppCntB
76 75 nnzd φaApAaxBpppCntB
77 57 nnzd φaApAaxBB
78 eldifsni pAapa
79 78 ad2antlr φaApAaxBpa
80 79 necomd φaApAaxBap
81 prmrp apagcdp=1ap
82 56 63 81 syl2anc φaApAaxBagcdp=1ap
83 80 82 mpbird φaApAaxBagcdp=1
84 prmz aa
85 56 84 syl φaApAaxBa
86 prmz pp
87 63 86 syl φaApAaxBp
88 56 57 pccld φaApAaxBapCntB0
89 rpexp12i apapCntB0ppCntB0agcdp=1aapCntBgcdpppCntB=1
90 85 87 88 74 89 syl112anc φaApAaxBagcdp=1aapCntBgcdpppCntB=1
91 83 90 mpd φaApAaxBaapCntBgcdpppCntB=1
92 coprmdvds2 aapCntBpppCntBBaapCntBgcdpppCntB=1aapCntBBpppCntBBaapCntBpppCntBB
93 72 76 77 91 92 syl31anc φaApAaxBaapCntBBpppCntBBaapCntBpppCntBB
94 59 65 93 mp2and φaApAaxBaapCntBpppCntBB
95 68 simp3d φaAB=aapCntBBaapCntB
96 95 ad2antrr φaApAaxBB=aapCntBBaapCntB
97 94 96 breqtrd φaApAaxBaapCntBpppCntBaapCntBBaapCntB
98 69 simprd φaABaapCntB
99 98 ad2antrr φaApAaxBBaapCntB
100 99 nnzd φaApAaxBBaapCntB
101 71 nnne0d φaApAaxBaapCntB0
102 dvdscmulr pppCntBBaapCntBaapCntBaapCntB0aapCntBpppCntBaapCntBBaapCntBpppCntBBaapCntB
103 76 100 72 101 102 syl112anc φaApAaxBaapCntBpppCntBaapCntBBaapCntBpppCntBBaapCntB
104 97 103 mpbid φaApAaxBpppCntBBaapCntB
105 1 2 odcl xBOx0
106 105 adantl φaApAaxBOx0
107 106 nn0zd φaApAaxBOx
108 dvdstr OxpppCntBBaapCntBOxpppCntBpppCntBBaapCntBOxBaapCntB
109 107 76 100 108 syl3anc φaApAaxBOxpppCntBpppCntBBaapCntBOxBaapCntB
110 104 109 mpan2d φaApAaxBOxpppCntBOxBaapCntB
111 110 ss2rabdv φaApAaxB|OxpppCntBxB|OxBaapCntB
112 44 elpw xB|OxpppCntB𝒫xB|OxBaapCntBxB|OxpppCntBxB|OxBaapCntB
113 111 112 sylibr φaApAaxB|OxpppCntB𝒫xB|OxBaapCntB
114 3 reseq1i SAa=pAxB|OxpppCntBAa
115 difss AaA
116 resmpt AaApAxB|OxpppCntBAa=pAaxB|OxpppCntB
117 115 116 ax-mp pAxB|OxpppCntBAa=pAaxB|OxpppCntB
118 114 117 eqtri SAa=pAaxB|OxpppCntB
119 113 118 fmptd φaASAa:Aa𝒫xB|OxBaapCntB
120 119 frnd φaAranSAa𝒫xB|OxBaapCntB
121 54 120 eqsstrid φaASAa𝒫xB|OxBaapCntB
122 sspwuni SAa𝒫xB|OxBaapCntBSAaxB|OxBaapCntB
123 121 122 sylib φaASAaxB|OxBaapCntB
124 98 nnzd φaABaapCntB
125 2 1 oddvdssubg GAbelBaapCntBxB|OxBaapCntBSubGrpG
126 49 124 125 syl2anc φaAxB|OxBaapCntBSubGrpG
127 9 mrcsscl SubGrpGMooreBaseGSAaxB|OxBaapCntBxB|OxBaapCntBSubGrpGmrClsSubGrpGSAaxB|OxBaapCntB
128 53 123 126 127 syl3anc φaAmrClsSubGrpGSAaxB|OxBaapCntB
129 ss2in SaxB|OxaapCntBmrClsSubGrpGSAaxB|OxBaapCntBSamrClsSubGrpGSAaxB|OxaapCntBxB|OxBaapCntB
130 48 128 129 syl2anc φaASamrClsSubGrpGSAaxB|OxaapCntBxB|OxBaapCntB
131 eqid xB|OxaapCntB=xB|OxaapCntB
132 eqid xB|OxBaapCntB=xB|OxBaapCntB
133 68 simp2d φaAaapCntBgcdBaapCntB=1
134 eqid LSSumG=LSSumG
135 1 2 131 132 49 70 98 133 95 8 134 ablfacrp φaAxB|OxaapCntBxB|OxBaapCntB=0GxB|OxaapCntBLSSumGxB|OxBaapCntB=B
136 135 simpld φaAxB|OxaapCntBxB|OxBaapCntB=0G
137 130 136 sseqtrd φaASamrClsSubGrpGSAa0G
138 7 8 9 11 14 30 37 137 dmdprdd φGdomDProdS