Metamath Proof Explorer


Theorem ablfac1eulem

Description: Lemma for ablfac1eu . (Contributed by Mario Carneiro, 27-Apr-2016)

Ref Expression
Hypotheses ablfac1.b B = Base G
ablfac1.o O = od G
ablfac1.s S = p A x B | O x p p pCnt B
ablfac1.g φ G Abel
ablfac1.f φ B Fin
ablfac1.1 φ A
ablfac1c.d D = w | w B
ablfac1.2 φ D A
ablfac1eu.1 φ G dom DProd T G DProd T = B
ablfac1eu.2 φ dom T = A
ablfac1eu.3 φ q A C 0
ablfac1eu.4 φ q A T q = q C
ablfac1eulem.1 φ P
ablfac1eulem.2 φ A Fin
Assertion ablfac1eulem φ ¬ P G DProd T A P

Proof

Step Hyp Ref Expression
1 ablfac1.b B = Base G
2 ablfac1.o O = od G
3 ablfac1.s S = p A x B | O x p p pCnt B
4 ablfac1.g φ G Abel
5 ablfac1.f φ B Fin
6 ablfac1.1 φ A
7 ablfac1c.d D = w | w B
8 ablfac1.2 φ D A
9 ablfac1eu.1 φ G dom DProd T G DProd T = B
10 ablfac1eu.2 φ dom T = A
11 ablfac1eu.3 φ q A C 0
12 ablfac1eu.4 φ q A T q = q C
13 ablfac1eulem.1 φ P
14 ablfac1eulem.2 φ A Fin
15 ssid A A
16 sseq1 y = y A A
17 difeq1 y = y P = P
18 0dif P =
19 17 18 eqtrdi y = y P =
20 19 reseq2d y = T y P = T
21 res0 T =
22 20 21 eqtrdi y = T y P =
23 22 oveq2d y = G DProd T y P = G DProd
24 23 fveq2d y = G DProd T y P = G DProd
25 24 breq2d y = P G DProd T y P P G DProd
26 25 notbid y = ¬ P G DProd T y P ¬ P G DProd
27 16 26 imbi12d y = y A ¬ P G DProd T y P A ¬ P G DProd
28 27 imbi2d y = φ y A ¬ P G DProd T y P φ A ¬ P G DProd
29 sseq1 y = z y A z A
30 difeq1 y = z y P = z P
31 30 reseq2d y = z T y P = T z P
32 31 oveq2d y = z G DProd T y P = G DProd T z P
33 32 fveq2d y = z G DProd T y P = G DProd T z P
34 33 breq2d y = z P G DProd T y P P G DProd T z P
35 34 notbid y = z ¬ P G DProd T y P ¬ P G DProd T z P
36 29 35 imbi12d y = z y A ¬ P G DProd T y P z A ¬ P G DProd T z P
37 36 imbi2d y = z φ y A ¬ P G DProd T y P φ z A ¬ P G DProd T z P
38 sseq1 y = z q y A z q A
39 difeq1 y = z q y P = z q P
40 39 reseq2d y = z q T y P = T z q P
41 40 oveq2d y = z q G DProd T y P = G DProd T z q P
42 41 fveq2d y = z q G DProd T y P = G DProd T z q P
43 42 breq2d y = z q P G DProd T y P P G DProd T z q P
44 43 notbid y = z q ¬ P G DProd T y P ¬ P G DProd T z q P
45 38 44 imbi12d y = z q y A ¬ P G DProd T y P z q A ¬ P G DProd T z q P
46 45 imbi2d y = z q φ y A ¬ P G DProd T y P φ z q A ¬ P G DProd T z q P
47 sseq1 y = A y A A A
48 difeq1 y = A y P = A P
49 48 reseq2d y = A T y P = T A P
50 49 oveq2d y = A G DProd T y P = G DProd T A P
51 50 fveq2d y = A G DProd T y P = G DProd T A P
52 51 breq2d y = A P G DProd T y P P G DProd T A P
53 52 notbid y = A ¬ P G DProd T y P ¬ P G DProd T A P
54 47 53 imbi12d y = A y A ¬ P G DProd T y P A A ¬ P G DProd T A P
55 54 imbi2d y = A φ y A ¬ P G DProd T y P φ A A ¬ P G DProd T A P
56 nprmdvds1 P ¬ P 1
57 13 56 syl φ ¬ P 1
58 ablgrp G Abel G Grp
59 eqid 0 G = 0 G
60 59 dprd0 G Grp G dom DProd G DProd = 0 G
61 4 58 60 3syl φ G dom DProd G DProd = 0 G
62 61 simprd φ G DProd = 0 G
63 62 fveq2d φ G DProd = 0 G
64 fvex 0 G V
65 hashsng 0 G V 0 G = 1
66 64 65 ax-mp 0 G = 1
67 63 66 eqtrdi φ G DProd = 1
68 67 breq2d φ P G DProd P 1
69 57 68 mtbird φ ¬ P G DProd
70 69 a1d φ A ¬ P G DProd
71 ssun1 z z q
72 sstr z z q z q A z A
73 71 72 mpan z q A z A
74 73 imim1i z A ¬ P G DProd T z P z q A ¬ P G DProd T z P
75 9 simpld φ G dom DProd T
76 75 10 dprdf2 φ T : A SubGrp G
77 76 adantr φ ¬ q z z q A T : A SubGrp G
78 simprr φ ¬ q z z q A z q A
79 78 ssdifssd φ ¬ q z z q A z q P A
80 77 79 fssresd φ ¬ q z z q A T z q P : z q P SubGrp G
81 simprl φ ¬ q z z q A ¬ q z
82 disjsn z q = ¬ q z
83 81 82 sylibr φ ¬ q z z q A z q =
84 83 difeq1d φ ¬ q z z q A z q P = P
85 difindir z q P = z P q P
86 84 85 18 3eqtr3g φ ¬ q z z q A z P q P =
87 difundir z q P = z P q P
88 87 a1i φ ¬ q z z q A z q P = z P q P
89 eqid LSSum G = LSSum G
90 75 adantr φ ¬ q z z q A G dom DProd T
91 10 adantr φ ¬ q z z q A dom T = A
92 90 91 79 dprdres φ ¬ q z z q A G dom DProd T z q P G DProd T z q P G DProd T
93 92 simpld φ ¬ q z z q A G dom DProd T z q P
94 80 86 88 89 93 dprdsplit φ ¬ q z z q A G DProd T z q P = G DProd T z q P z P LSSum G G DProd T z q P q P
95 94 fveq2d φ ¬ q z z q A G DProd T z q P = G DProd T z q P z P LSSum G G DProd T z q P q P
96 eqid Cntz G = Cntz G
97 80 fdmd φ ¬ q z z q A dom T z q P = z q P
98 ssdif z z q z P z q P
99 71 98 mp1i φ ¬ q z z q A z P z q P
100 93 97 99 dprdres φ ¬ q z z q A G dom DProd T z q P z P G DProd T z q P z P G DProd T z q P
101 100 simpld φ ¬ q z z q A G dom DProd T z q P z P
102 dprdsubg G dom DProd T z q P z P G DProd T z q P z P SubGrp G
103 101 102 syl φ ¬ q z z q A G DProd T z q P z P SubGrp G
104 ssun2 q z q
105 ssdif q z q q P z q P
106 104 105 mp1i φ ¬ q z z q A q P z q P
107 93 97 106 dprdres φ ¬ q z z q A G dom DProd T z q P q P G DProd T z q P q P G DProd T z q P
108 107 simpld φ ¬ q z z q A G dom DProd T z q P q P
109 dprdsubg G dom DProd T z q P q P G DProd T z q P q P SubGrp G
110 108 109 syl φ ¬ q z z q A G DProd T z q P q P SubGrp G
111 93 97 99 106 86 59 dprddisj2 φ ¬ q z z q A G DProd T z q P z P G DProd T z q P q P = 0 G
112 93 97 99 106 86 96 dprdcntz2 φ ¬ q z z q A G DProd T z q P z P Cntz G G DProd T z q P q P
113 5 adantr φ ¬ q z z q A B Fin
114 1 dprdssv G DProd T z q P z P B
115 ssfi B Fin G DProd T z q P z P B G DProd T z q P z P Fin
116 113 114 115 sylancl φ ¬ q z z q A G DProd T z q P z P Fin
117 1 dprdssv G DProd T z q P q P B
118 ssfi B Fin G DProd T z q P q P B G DProd T z q P q P Fin
119 113 117 118 sylancl φ ¬ q z z q A G DProd T z q P q P Fin
120 89 59 96 103 110 111 112 116 119 lsmhash φ ¬ q z z q A G DProd T z q P z P LSSum G G DProd T z q P q P = G DProd T z q P z P G DProd T z q P q P
121 99 resabs1d φ ¬ q z z q A T z q P z P = T z P
122 121 oveq2d φ ¬ q z z q A G DProd T z q P z P = G DProd T z P
123 122 fveq2d φ ¬ q z z q A G DProd T z q P z P = G DProd T z P
124 106 resabs1d φ ¬ q z z q A T z q P q P = T q P
125 124 oveq2d φ ¬ q z z q A G DProd T z q P q P = G DProd T q P
126 125 fveq2d φ ¬ q z z q A G DProd T z q P q P = G DProd T q P
127 123 126 oveq12d φ ¬ q z z q A G DProd T z q P z P G DProd T z q P q P = G DProd T z P G DProd T q P
128 95 120 127 3eqtrd φ ¬ q z z q A G DProd T z q P = G DProd T z P G DProd T q P
129 128 breq2d φ ¬ q z z q A P G DProd T z q P P G DProd T z P G DProd T q P
130 13 adantr φ ¬ q z z q A P
131 1 dprdssv G DProd T z P B
132 ssfi B Fin G DProd T z P B G DProd T z P Fin
133 113 131 132 sylancl φ ¬ q z z q A G DProd T z P Fin
134 hashcl G DProd T z P Fin G DProd T z P 0
135 133 134 syl φ ¬ q z z q A G DProd T z P 0
136 135 nn0zd φ ¬ q z z q A G DProd T z P
137 1 dprdssv G DProd T q P B
138 ssfi B Fin G DProd T q P B G DProd T q P Fin
139 113 137 138 sylancl φ ¬ q z z q A G DProd T q P Fin
140 hashcl G DProd T q P Fin G DProd T q P 0
141 139 140 syl φ ¬ q z z q A G DProd T q P 0
142 141 nn0zd φ ¬ q z z q A G DProd T q P
143 euclemma P G DProd T z P G DProd T q P P G DProd T z P G DProd T q P P G DProd T z P P G DProd T q P
144 130 136 142 143 syl3anc φ ¬ q z z q A P G DProd T z P G DProd T q P P G DProd T z P P G DProd T q P
145 129 144 bitrd φ ¬ q z z q A P G DProd T z q P P G DProd T z P P G DProd T q P
146 57 ad2antrr φ ¬ q z z q A q = P ¬ P 1
147 simpr φ ¬ q z z q A q = P q = P
148 147 sneqd φ ¬ q z z q A q = P q = P
149 148 difeq1d φ ¬ q z z q A q = P q P = P P
150 difid P P =
151 149 150 eqtrdi φ ¬ q z z q A q = P q P =
152 151 reseq2d φ ¬ q z z q A q = P T q P = T
153 152 21 eqtrdi φ ¬ q z z q A q = P T q P =
154 153 oveq2d φ ¬ q z z q A q = P G DProd T q P = G DProd
155 62 ad2antrr φ ¬ q z z q A q = P G DProd = 0 G
156 154 155 eqtrd φ ¬ q z z q A q = P G DProd T q P = 0 G
157 156 fveq2d φ ¬ q z z q A q = P G DProd T q P = 0 G
158 157 66 eqtrdi φ ¬ q z z q A q = P G DProd T q P = 1
159 158 breq2d φ ¬ q z z q A q = P P G DProd T q P P 1
160 146 159 mtbird φ ¬ q z z q A q = P ¬ P G DProd T q P
161 6 adantr φ ¬ q z z q A A
162 78 unssbd φ ¬ q z z q A q A
163 vex q V
164 163 snss q A q A
165 162 164 sylibr φ ¬ q z z q A q A
166 161 165 sseldd φ ¬ q z z q A q
167 165 11 syldan φ ¬ q z z q A C 0
168 prmdvdsexpr P q C 0 P q C P = q
169 130 166 167 168 syl3anc φ ¬ q z z q A P q C P = q
170 eqcom P = q q = P
171 169 170 syl6ib φ ¬ q z z q A P q C q = P
172 171 necon3ad φ ¬ q z z q A q P ¬ P q C
173 172 imp φ ¬ q z z q A q P ¬ P q C
174 disjsn2 q P q P =
175 174 adantl φ ¬ q z z q A q P q P =
176 disj3 q P = q = q P
177 175 176 sylib φ ¬ q z z q A q P q = q P
178 177 reseq2d φ ¬ q z z q A q P T q = T q P
179 178 oveq2d φ ¬ q z z q A q P G DProd T q = G DProd T q P
180 75 ad2antrr φ ¬ q z z q A q P G dom DProd T
181 10 ad2antrr φ ¬ q z z q A q P dom T = A
182 165 adantr φ ¬ q z z q A q P q A
183 180 181 182 dpjlem φ ¬ q z z q A q P G DProd T q = T q
184 179 183 eqtr3d φ ¬ q z z q A q P G DProd T q P = T q
185 184 fveq2d φ ¬ q z z q A q P G DProd T q P = T q
186 165 12 syldan φ ¬ q z z q A T q = q C
187 186 adantr φ ¬ q z z q A q P T q = q C
188 185 187 eqtrd φ ¬ q z z q A q P G DProd T q P = q C
189 188 breq2d φ ¬ q z z q A q P P G DProd T q P P q C
190 173 189 mtbird φ ¬ q z z q A q P ¬ P G DProd T q P
191 160 190 pm2.61dane φ ¬ q z z q A ¬ P G DProd T q P
192 orel2 ¬ P G DProd T q P P G DProd T z P P G DProd T q P P G DProd T z P
193 191 192 syl φ ¬ q z z q A P G DProd T z P P G DProd T q P P G DProd T z P
194 145 193 sylbid φ ¬ q z z q A P G DProd T z q P P G DProd T z P
195 194 con3d φ ¬ q z z q A ¬ P G DProd T z P ¬ P G DProd T z q P
196 195 expr φ ¬ q z z q A ¬ P G DProd T z P ¬ P G DProd T z q P
197 196 a2d φ ¬ q z z q A ¬ P G DProd T z P z q A ¬ P G DProd T z q P
198 74 197 syl5 φ ¬ q z z A ¬ P G DProd T z P z q A ¬ P G DProd T z q P
199 198 expcom ¬ q z φ z A ¬ P G DProd T z P z q A ¬ P G DProd T z q P
200 199 adantl z Fin ¬ q z φ z A ¬ P G DProd T z P z q A ¬ P G DProd T z q P
201 200 a2d z Fin ¬ q z φ z A ¬ P G DProd T z P φ z q A ¬ P G DProd T z q P
202 28 37 46 55 70 201 findcard2s A Fin φ A A ¬ P G DProd T A P
203 14 202 mpcom φ A A ¬ P G DProd T A P
204 15 203 mpi φ ¬ P G DProd T A P