Metamath Proof Explorer


Theorem ablfac1eu

Description: The factorization of ablfac1b is unique, in that any other factorization into prime power factors (even if the exponents are different) must be equal to S . (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses ablfac1.b B = Base G
ablfac1.o O = od G
ablfac1.s S = p A x B | O x p p pCnt B
ablfac1.g φ G Abel
ablfac1.f φ B Fin
ablfac1.1 φ A
ablfac1c.d D = w | w B
ablfac1.2 φ D A
ablfac1eu.1 φ G dom DProd T G DProd T = B
ablfac1eu.2 φ dom T = A
ablfac1eu.3 φ q A C 0
ablfac1eu.4 φ q A T q = q C
Assertion ablfac1eu φ T = S

Proof

Step Hyp Ref Expression
1 ablfac1.b B = Base G
2 ablfac1.o O = od G
3 ablfac1.s S = p A x B | O x p p pCnt B
4 ablfac1.g φ G Abel
5 ablfac1.f φ B Fin
6 ablfac1.1 φ A
7 ablfac1c.d D = w | w B
8 ablfac1.2 φ D A
9 ablfac1eu.1 φ G dom DProd T G DProd T = B
10 ablfac1eu.2 φ dom T = A
11 ablfac1eu.3 φ q A C 0
12 ablfac1eu.4 φ q A T q = q C
13 9 simpld φ G dom DProd T
14 13 10 dprdf2 φ T : A SubGrp G
15 14 ffnd φ T Fn A
16 1 2 3 4 5 6 ablfac1b φ G dom DProd S
17 1 fvexi B V
18 17 rabex x B | O x p p pCnt B V
19 18 3 dmmpti dom S = A
20 19 a1i φ dom S = A
21 16 20 dprdf2 φ S : A SubGrp G
22 21 ffnd φ S Fn A
23 5 adantr φ q A B Fin
24 21 ffvelrnda φ q A S q SubGrp G
25 1 subgss S q SubGrp G S q B
26 24 25 syl φ q A S q B
27 23 26 ssfid φ q A S q Fin
28 14 ffvelrnda φ q A T q SubGrp G
29 1 subgss T q SubGrp G T q B
30 28 29 syl φ q A T q B
31 30 sselda φ q A x T q x B
32 1 2 odcl x B O x 0
33 31 32 syl φ q A x T q O x 0
34 33 nn0zd φ q A x T q O x
35 23 30 ssfid φ q A T q Fin
36 hashcl T q Fin T q 0
37 35 36 syl φ q A T q 0
38 37 nn0zd φ q A T q
39 38 adantr φ q A x T q T q
40 6 sselda φ q A q
41 prmnn q q
42 40 41 syl φ q A q
43 ablgrp G Abel G Grp
44 4 43 syl φ G Grp
45 1 grpbn0 G Grp B
46 44 45 syl φ B
47 hashnncl B Fin B B
48 5 47 syl φ B B
49 46 48 mpbird φ B
50 49 adantr φ q A B
51 40 50 pccld φ q A q pCnt B 0
52 42 51 nnexpcld φ q A q q pCnt B
53 52 nnzd φ q A q q pCnt B
54 53 adantr φ q A x T q q q pCnt B
55 28 adantr φ q A x T q T q SubGrp G
56 35 adantr φ q A x T q T q Fin
57 simpr φ q A x T q x T q
58 2 odsubdvds T q SubGrp G T q Fin x T q O x T q
59 55 56 57 58 syl3anc φ q A x T q O x T q
60 prmz q q
61 40 60 syl φ q A q
62 11 nn0zd φ q A C
63 51 nn0zd φ q A q pCnt B
64 1 lagsubg T q SubGrp G B Fin T q B
65 28 23 64 syl2anc φ q A T q B
66 12 65 eqbrtrrd φ q A q C B
67 50 nnzd φ q A B
68 pcdvdsb q B C 0 C q pCnt B q C B
69 40 67 11 68 syl3anc φ q A C q pCnt B q C B
70 66 69 mpbird φ q A C q pCnt B
71 eluz2 q pCnt B C C q pCnt B C q pCnt B
72 62 63 70 71 syl3anbrc φ q A q pCnt B C
73 dvdsexp q C 0 q pCnt B C q C q q pCnt B
74 61 11 72 73 syl3anc φ q A q C q q pCnt B
75 12 74 eqbrtrd φ q A T q q q pCnt B
76 75 adantr φ q A x T q T q q q pCnt B
77 34 39 54 59 76 dvdstrd φ q A x T q O x q q pCnt B
78 30 77 ssrabdv φ q A T q x B | O x q q pCnt B
79 id p = q p = q
80 oveq1 p = q p pCnt B = q pCnt B
81 79 80 oveq12d p = q p p pCnt B = q q pCnt B
82 81 breq2d p = q O x p p pCnt B O x q q pCnt B
83 82 rabbidv p = q x B | O x p p pCnt B = x B | O x q q pCnt B
84 83 3 18 fvmpt3i q A S q = x B | O x q q pCnt B
85 84 adantl φ q A S q = x B | O x q q pCnt B
86 78 85 sseqtrrd φ q A T q S q
87 52 nnnn0d φ q A q q pCnt B 0
88 pcdvds q B q q pCnt B B
89 40 50 88 syl2anc φ q A q q pCnt B B
90 13 adantr φ q A G dom DProd T
91 10 adantr φ q A dom T = A
92 8 adantr φ q A D A
93 90 91 92 dprdres φ q A G dom DProd T D G DProd T D G DProd T
94 93 simpld φ q A G dom DProd T D
95 14 adantr φ q A T : A SubGrp G
96 95 92 fssresd φ q A T D : D SubGrp G
97 96 fdmd φ q A dom T D = D
98 difssd φ q A D q D
99 94 97 98 dprdres φ q A G dom DProd T D D q G DProd T D D q G DProd T D
100 99 simpld φ q A G dom DProd T D D q
101 dprdsubg G dom DProd T D D q G DProd T D D q SubGrp G
102 100 101 syl φ q A G DProd T D D q SubGrp G
103 1 lagsubg G DProd T D D q SubGrp G B Fin G DProd T D D q B
104 102 23 103 syl2anc φ q A G DProd T D D q B
105 eqid 0 G = 0 G
106 105 subg0cl G DProd T D D q SubGrp G 0 G G DProd T D D q
107 102 106 syl φ q A 0 G G DProd T D D q
108 107 ne0d φ q A G DProd T D D q
109 1 dprdssv G DProd T D D q B
110 ssfi B Fin G DProd T D D q B G DProd T D D q Fin
111 23 109 110 sylancl φ q A G DProd T D D q Fin
112 hashnncl G DProd T D D q Fin G DProd T D D q G DProd T D D q
113 111 112 syl φ q A G DProd T D D q G DProd T D D q
114 108 113 mpbird φ q A G DProd T D D q
115 114 nnzd φ q A G DProd T D D q
116 id x = q x = q
117 sneq x = q x = q
118 117 difeq2d x = q D x = D q
119 118 reseq2d x = q T D D x = T D D q
120 119 oveq2d x = q G DProd T D D x = G DProd T D D q
121 120 fveq2d x = q G DProd T D D x = G DProd T D D q
122 116 121 breq12d x = q x G DProd T D D x q G DProd T D D q
123 122 notbid x = q ¬ x G DProd T D D x ¬ q G DProd T D D q
124 eqid p D y B | O y p p pCnt B = p D y B | O y p p pCnt B
125 4 adantr φ x G Abel
126 5 adantr φ x B Fin
127 7 ssrab3 D
128 127 a1i φ x D
129 ssidd φ x D D
130 13 10 8 dprdres φ G dom DProd T D G DProd T D G DProd T
131 130 simpld φ G dom DProd T D
132 dprdsubg G dom DProd T D G DProd T D SubGrp G
133 131 132 syl φ G DProd T D SubGrp G
134 difssd φ A D A
135 13 10 134 dprdres φ G dom DProd T A D G DProd T A D G DProd T
136 135 simpld φ G dom DProd T A D
137 dprdsubg G dom DProd T A D G DProd T A D SubGrp G
138 136 137 syl φ G DProd T A D SubGrp G
139 difss A D A
140 fssres T : A SubGrp G A D A T A D : A D SubGrp G
141 14 139 140 sylancl φ T A D : A D SubGrp G
142 141 fdmd φ dom T A D = A D
143 fvres q A D T A D q = T q
144 143 adantl φ q A D T A D q = T q
145 eldif q A D q A ¬ q D
146 35 adantrr φ q A ¬ q D T q Fin
147 105 subg0cl T q SubGrp G 0 G T q
148 28 147 syl φ q A 0 G T q
149 148 snssd φ q A 0 G T q
150 149 adantrr φ q A ¬ q D 0 G T q
151 fvex 0 G V
152 hashsng 0 G V 0 G = 1
153 151 152 ax-mp 0 G = 1
154 12 adantrr φ q A ¬ q D T q = q C
155 40 adantr φ q A C q
156 iddvdsexp q C q q C
157 61 156 sylan φ q A C q q C
158 66 adantr φ q A C q C B
159 12 38 eqeltrrd φ q A q C
160 dvdstr q q C B q q C q C B q B
161 61 159 67 160 syl3anc φ q A q q C q C B q B
162 161 adantr φ q A C q q C q C B q B
163 157 158 162 mp2and φ q A C q B
164 breq1 w = q w B q B
165 164 7 elrab2 q D q q B
166 155 163 165 sylanbrc φ q A C q D
167 166 ex φ q A C q D
168 167 con3d φ q A ¬ q D ¬ C
169 168 impr φ q A ¬ q D ¬ C
170 11 adantrr φ q A ¬ q D C 0
171 elnn0 C 0 C C = 0
172 170 171 sylib φ q A ¬ q D C C = 0
173 172 ord φ q A ¬ q D ¬ C C = 0
174 169 173 mpd φ q A ¬ q D C = 0
175 174 oveq2d φ q A ¬ q D q C = q 0
176 42 adantrr φ q A ¬ q D q
177 176 nncnd φ q A ¬ q D q
178 177 exp0d φ q A ¬ q D q 0 = 1
179 154 175 178 3eqtrd φ q A ¬ q D T q = 1
180 153 179 eqtr4id φ q A ¬ q D 0 G = T q
181 snfi 0 G Fin
182 hashen 0 G Fin T q Fin 0 G = T q 0 G T q
183 181 146 182 sylancr φ q A ¬ q D 0 G = T q 0 G T q
184 180 183 mpbid φ q A ¬ q D 0 G T q
185 fisseneq T q Fin 0 G T q 0 G T q 0 G = T q
186 146 150 184 185 syl3anc φ q A ¬ q D 0 G = T q
187 105 subg0cl G DProd T D SubGrp G 0 G G DProd T D
188 133 187 syl φ 0 G G DProd T D
189 188 adantr φ q A ¬ q D 0 G G DProd T D
190 189 snssd φ q A ¬ q D 0 G G DProd T D
191 186 190 eqsstrrd φ q A ¬ q D T q G DProd T D
192 145 191 sylan2b φ q A D T q G DProd T D
193 144 192 eqsstrd φ q A D T A D q G DProd T D
194 136 142 133 193 dprdlub φ G DProd T A D G DProd T D
195 eqid LSSum G = LSSum G
196 195 lsmss2 G DProd T D SubGrp G G DProd T A D SubGrp G G DProd T A D G DProd T D G DProd T D LSSum G G DProd T A D = G DProd T D
197 133 138 194 196 syl3anc φ G DProd T D LSSum G G DProd T A D = G DProd T D
198 disjdif D A D =
199 198 a1i φ D A D =
200 undif2 D A D = D A
201 ssequn1 D A D A = A
202 8 201 sylib φ D A = A
203 200 202 syl5req φ A = D A D
204 14 199 203 195 13 dprdsplit φ G DProd T = G DProd T D LSSum G G DProd T A D
205 9 simprd φ G DProd T = B
206 204 205 eqtr3d φ G DProd T D LSSum G G DProd T A D = B
207 197 206 eqtr3d φ G DProd T D = B
208 131 207 jca φ G dom DProd T D G DProd T D = B
209 208 adantr φ x G dom DProd T D G DProd T D = B
210 14 8 fssresd φ T D : D SubGrp G
211 210 fdmd φ dom T D = D
212 211 adantr φ x dom T D = D
213 8 sselda φ q D q A
214 213 11 syldan φ q D C 0
215 214 adantlr φ x q D C 0
216 fvres q D T D q = T q
217 216 adantl φ q D T D q = T q
218 217 fveq2d φ q D T D q = T q
219 213 12 syldan φ q D T q = q C
220 218 219 eqtrd φ q D T D q = q C
221 220 adantlr φ x q D T D q = q C
222 simpr φ x x
223 fzfid φ 1 B Fin
224 prmnn w w
225 224 3ad2ant2 φ w w B w
226 prmz w w
227 dvdsle w B w B w B
228 226 49 227 syl2anr φ w w B w B
229 228 3impia φ w w B w B
230 49 nnzd φ B
231 230 3ad2ant1 φ w w B B
232 fznn B w 1 B w w B
233 231 232 syl φ w w B w 1 B w w B
234 225 229 233 mpbir2and φ w w B w 1 B
235 234 rabssdv φ w | w B 1 B
236 7 235 eqsstrid φ D 1 B
237 223 236 ssfid φ D Fin
238 237 adantr φ x D Fin
239 1 2 124 125 126 128 7 129 209 212 215 221 222 238 ablfac1eulem φ x ¬ x G DProd T D D x
240 239 ralrimiva φ x ¬ x G DProd T D D x
241 240 adantr φ q A x ¬ x G DProd T D D x
242 123 241 40 rspcdva φ q A ¬ q G DProd T D D q
243 coprm q G DProd T D D q ¬ q G DProd T D D q q gcd G DProd T D D q = 1
244 40 115 243 syl2anc φ q A ¬ q G DProd T D D q q gcd G DProd T D D q = 1
245 242 244 mpbid φ q A q gcd G DProd T D D q = 1
246 rpexp1i q G DProd T D D q q pCnt B 0 q gcd G DProd T D D q = 1 q q pCnt B gcd G DProd T D D q = 1
247 61 115 51 246 syl3anc φ q A q gcd G DProd T D D q = 1 q q pCnt B gcd G DProd T D D q = 1
248 245 247 mpd φ q A q q pCnt B gcd G DProd T D D q = 1
249 coprmdvds2 q q pCnt B G DProd T D D q B q q pCnt B gcd G DProd T D D q = 1 q q pCnt B B G DProd T D D q B q q pCnt B G DProd T D D q B
250 53 115 67 248 249 syl31anc φ q A q q pCnt B B G DProd T D D q B q q pCnt B G DProd T D D q B
251 89 104 250 mp2and φ q A q q pCnt B G DProd T D D q B
252 eqid Cntz G = Cntz G
253 inss1 D q D
254 253 a1i φ q A D q D
255 94 97 254 dprdres φ q A G dom DProd T D D q G DProd T D D q G DProd T D
256 255 simpld φ q A G dom DProd T D D q
257 dprdsubg G dom DProd T D D q G DProd T D D q SubGrp G
258 256 257 syl φ q A G DProd T D D q SubGrp G
259 inass D q D q = D q D q
260 disjdif q D q =
261 260 ineq2i D q D q = D
262 in0 D =
263 259 261 262 3eqtri D q D q =
264 263 a1i φ q A D q D q =
265 94 97 254 98 264 105 dprddisj2 φ q A G DProd T D D q G DProd T D D q = 0 G
266 94 97 254 98 264 252 dprdcntz2 φ q A G DProd T D D q Cntz G G DProd T D D q
267 1 dprdssv G DProd T D D q B
268 ssfi B Fin G DProd T D D q B G DProd T D D q Fin
269 23 267 268 sylancl φ q A G DProd T D D q Fin
270 195 105 252 258 102 265 266 269 111 lsmhash φ q A G DProd T D D q LSSum G G DProd T D D q = G DProd T D D q G DProd T D D q
271 inundif D q D q = D
272 271 eqcomi D = D q D q
273 272 a1i φ q A D = D q D q
274 96 264 273 195 94 dprdsplit φ q A G DProd T D = G DProd T D D q LSSum G G DProd T D D q
275 207 adantr φ q A G DProd T D = B
276 274 275 eqtr3d φ q A G DProd T D D q LSSum G G DProd T D D q = B
277 276 fveq2d φ q A G DProd T D D q LSSum G G DProd T D D q = B
278 snssi q D q D
279 278 adantl φ q A q D q D
280 sseqin2 q D D q = q
281 279 280 sylib φ q A q D D q = q
282 281 reseq2d φ q A q D T D D q = T D q
283 282 oveq2d φ q A q D G DProd T D D q = G DProd T D q
284 94 adantr φ q A q D G dom DProd T D
285 211 ad2antrr φ q A q D dom T D = D
286 simpr φ q A q D q D
287 284 285 286 dpjlem φ q A q D G DProd T D q = T D q
288 216 adantl φ q A q D T D q = T q
289 283 287 288 3eqtrd φ q A q D G DProd T D D q = T q
290 simprr φ q A ¬ q D ¬ q D
291 disjsn D q = ¬ q D
292 290 291 sylibr φ q A ¬ q D D q =
293 292 reseq2d φ q A ¬ q D T D D q = T D
294 res0 T D =
295 293 294 eqtrdi φ q A ¬ q D T D D q =
296 295 oveq2d φ q A ¬ q D G DProd T D D q = G DProd
297 105 dprd0 G Grp G dom DProd G DProd = 0 G
298 44 297 syl φ G dom DProd G DProd = 0 G
299 298 simprd φ G DProd = 0 G
300 299 adantr φ q A ¬ q D G DProd = 0 G
301 296 300 186 3eqtrd φ q A ¬ q D G DProd T D D q = T q
302 301 anassrs φ q A ¬ q D G DProd T D D q = T q
303 289 302 pm2.61dan φ q A G DProd T D D q = T q
304 303 fveq2d φ q A G DProd T D D q = T q
305 304 oveq1d φ q A G DProd T D D q G DProd T D D q = T q G DProd T D D q
306 270 277 305 3eqtr3d φ q A B = T q G DProd T D D q
307 251 306 breqtrd φ q A q q pCnt B G DProd T D D q T q G DProd T D D q
308 114 nnne0d φ q A G DProd T D D q 0
309 dvdsmulcr q q pCnt B T q G DProd T D D q G DProd T D D q 0 q q pCnt B G DProd T D D q T q G DProd T D D q q q pCnt B T q
310 53 38 115 308 309 syl112anc φ q A q q pCnt B G DProd T D D q T q G DProd T D D q q q pCnt B T q
311 307 310 mpbid φ q A q q pCnt B T q
312 dvdseq T q 0 q q pCnt B 0 T q q q pCnt B q q pCnt B T q T q = q q pCnt B
313 37 87 75 311 312 syl22anc φ q A T q = q q pCnt B
314 1 2 3 4 5 6 ablfac1a φ q A S q = q q pCnt B
315 313 314 eqtr4d φ q A T q = S q
316 hashen T q Fin S q Fin T q = S q T q S q
317 35 27 316 syl2anc φ q A T q = S q T q S q
318 315 317 mpbid φ q A T q S q
319 fisseneq S q Fin T q S q T q S q T q = S q
320 27 86 318 319 syl3anc φ q A T q = S q
321 15 22 320 eqfnfvd φ T = S