| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ablfac1.b |
|- B = ( Base ` G ) |
| 2 |
|
ablfac1.o |
|- O = ( od ` G ) |
| 3 |
|
ablfac1.s |
|- S = ( p e. A |-> { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } ) |
| 4 |
|
ablfac1.g |
|- ( ph -> G e. Abel ) |
| 5 |
|
ablfac1.f |
|- ( ph -> B e. Fin ) |
| 6 |
|
ablfac1.1 |
|- ( ph -> A C_ Prime ) |
| 7 |
|
ablfac1c.d |
|- D = { w e. Prime | w || ( # ` B ) } |
| 8 |
|
ablfac1.2 |
|- ( ph -> D C_ A ) |
| 9 |
|
ablfac1eu.1 |
|- ( ph -> ( G dom DProd T /\ ( G DProd T ) = B ) ) |
| 10 |
|
ablfac1eu.2 |
|- ( ph -> dom T = A ) |
| 11 |
|
ablfac1eu.3 |
|- ( ( ph /\ q e. A ) -> C e. NN0 ) |
| 12 |
|
ablfac1eu.4 |
|- ( ( ph /\ q e. A ) -> ( # ` ( T ` q ) ) = ( q ^ C ) ) |
| 13 |
9
|
simpld |
|- ( ph -> G dom DProd T ) |
| 14 |
13 10
|
dprdf2 |
|- ( ph -> T : A --> ( SubGrp ` G ) ) |
| 15 |
14
|
ffnd |
|- ( ph -> T Fn A ) |
| 16 |
1 2 3 4 5 6
|
ablfac1b |
|- ( ph -> G dom DProd S ) |
| 17 |
1
|
fvexi |
|- B e. _V |
| 18 |
17
|
rabex |
|- { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } e. _V |
| 19 |
18 3
|
dmmpti |
|- dom S = A |
| 20 |
19
|
a1i |
|- ( ph -> dom S = A ) |
| 21 |
16 20
|
dprdf2 |
|- ( ph -> S : A --> ( SubGrp ` G ) ) |
| 22 |
21
|
ffnd |
|- ( ph -> S Fn A ) |
| 23 |
5
|
adantr |
|- ( ( ph /\ q e. A ) -> B e. Fin ) |
| 24 |
21
|
ffvelcdmda |
|- ( ( ph /\ q e. A ) -> ( S ` q ) e. ( SubGrp ` G ) ) |
| 25 |
1
|
subgss |
|- ( ( S ` q ) e. ( SubGrp ` G ) -> ( S ` q ) C_ B ) |
| 26 |
24 25
|
syl |
|- ( ( ph /\ q e. A ) -> ( S ` q ) C_ B ) |
| 27 |
23 26
|
ssfid |
|- ( ( ph /\ q e. A ) -> ( S ` q ) e. Fin ) |
| 28 |
14
|
ffvelcdmda |
|- ( ( ph /\ q e. A ) -> ( T ` q ) e. ( SubGrp ` G ) ) |
| 29 |
1
|
subgss |
|- ( ( T ` q ) e. ( SubGrp ` G ) -> ( T ` q ) C_ B ) |
| 30 |
28 29
|
syl |
|- ( ( ph /\ q e. A ) -> ( T ` q ) C_ B ) |
| 31 |
30
|
sselda |
|- ( ( ( ph /\ q e. A ) /\ x e. ( T ` q ) ) -> x e. B ) |
| 32 |
1 2
|
odcl |
|- ( x e. B -> ( O ` x ) e. NN0 ) |
| 33 |
31 32
|
syl |
|- ( ( ( ph /\ q e. A ) /\ x e. ( T ` q ) ) -> ( O ` x ) e. NN0 ) |
| 34 |
33
|
nn0zd |
|- ( ( ( ph /\ q e. A ) /\ x e. ( T ` q ) ) -> ( O ` x ) e. ZZ ) |
| 35 |
23 30
|
ssfid |
|- ( ( ph /\ q e. A ) -> ( T ` q ) e. Fin ) |
| 36 |
|
hashcl |
|- ( ( T ` q ) e. Fin -> ( # ` ( T ` q ) ) e. NN0 ) |
| 37 |
35 36
|
syl |
|- ( ( ph /\ q e. A ) -> ( # ` ( T ` q ) ) e. NN0 ) |
| 38 |
37
|
nn0zd |
|- ( ( ph /\ q e. A ) -> ( # ` ( T ` q ) ) e. ZZ ) |
| 39 |
38
|
adantr |
|- ( ( ( ph /\ q e. A ) /\ x e. ( T ` q ) ) -> ( # ` ( T ` q ) ) e. ZZ ) |
| 40 |
6
|
sselda |
|- ( ( ph /\ q e. A ) -> q e. Prime ) |
| 41 |
|
prmnn |
|- ( q e. Prime -> q e. NN ) |
| 42 |
40 41
|
syl |
|- ( ( ph /\ q e. A ) -> q e. NN ) |
| 43 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
| 44 |
4 43
|
syl |
|- ( ph -> G e. Grp ) |
| 45 |
1
|
grpbn0 |
|- ( G e. Grp -> B =/= (/) ) |
| 46 |
44 45
|
syl |
|- ( ph -> B =/= (/) ) |
| 47 |
|
hashnncl |
|- ( B e. Fin -> ( ( # ` B ) e. NN <-> B =/= (/) ) ) |
| 48 |
5 47
|
syl |
|- ( ph -> ( ( # ` B ) e. NN <-> B =/= (/) ) ) |
| 49 |
46 48
|
mpbird |
|- ( ph -> ( # ` B ) e. NN ) |
| 50 |
49
|
adantr |
|- ( ( ph /\ q e. A ) -> ( # ` B ) e. NN ) |
| 51 |
40 50
|
pccld |
|- ( ( ph /\ q e. A ) -> ( q pCnt ( # ` B ) ) e. NN0 ) |
| 52 |
42 51
|
nnexpcld |
|- ( ( ph /\ q e. A ) -> ( q ^ ( q pCnt ( # ` B ) ) ) e. NN ) |
| 53 |
52
|
nnzd |
|- ( ( ph /\ q e. A ) -> ( q ^ ( q pCnt ( # ` B ) ) ) e. ZZ ) |
| 54 |
53
|
adantr |
|- ( ( ( ph /\ q e. A ) /\ x e. ( T ` q ) ) -> ( q ^ ( q pCnt ( # ` B ) ) ) e. ZZ ) |
| 55 |
28
|
adantr |
|- ( ( ( ph /\ q e. A ) /\ x e. ( T ` q ) ) -> ( T ` q ) e. ( SubGrp ` G ) ) |
| 56 |
35
|
adantr |
|- ( ( ( ph /\ q e. A ) /\ x e. ( T ` q ) ) -> ( T ` q ) e. Fin ) |
| 57 |
|
simpr |
|- ( ( ( ph /\ q e. A ) /\ x e. ( T ` q ) ) -> x e. ( T ` q ) ) |
| 58 |
2
|
odsubdvds |
|- ( ( ( T ` q ) e. ( SubGrp ` G ) /\ ( T ` q ) e. Fin /\ x e. ( T ` q ) ) -> ( O ` x ) || ( # ` ( T ` q ) ) ) |
| 59 |
55 56 57 58
|
syl3anc |
|- ( ( ( ph /\ q e. A ) /\ x e. ( T ` q ) ) -> ( O ` x ) || ( # ` ( T ` q ) ) ) |
| 60 |
|
prmz |
|- ( q e. Prime -> q e. ZZ ) |
| 61 |
40 60
|
syl |
|- ( ( ph /\ q e. A ) -> q e. ZZ ) |
| 62 |
11
|
nn0zd |
|- ( ( ph /\ q e. A ) -> C e. ZZ ) |
| 63 |
51
|
nn0zd |
|- ( ( ph /\ q e. A ) -> ( q pCnt ( # ` B ) ) e. ZZ ) |
| 64 |
1
|
lagsubg |
|- ( ( ( T ` q ) e. ( SubGrp ` G ) /\ B e. Fin ) -> ( # ` ( T ` q ) ) || ( # ` B ) ) |
| 65 |
28 23 64
|
syl2anc |
|- ( ( ph /\ q e. A ) -> ( # ` ( T ` q ) ) || ( # ` B ) ) |
| 66 |
12 65
|
eqbrtrrd |
|- ( ( ph /\ q e. A ) -> ( q ^ C ) || ( # ` B ) ) |
| 67 |
50
|
nnzd |
|- ( ( ph /\ q e. A ) -> ( # ` B ) e. ZZ ) |
| 68 |
|
pcdvdsb |
|- ( ( q e. Prime /\ ( # ` B ) e. ZZ /\ C e. NN0 ) -> ( C <_ ( q pCnt ( # ` B ) ) <-> ( q ^ C ) || ( # ` B ) ) ) |
| 69 |
40 67 11 68
|
syl3anc |
|- ( ( ph /\ q e. A ) -> ( C <_ ( q pCnt ( # ` B ) ) <-> ( q ^ C ) || ( # ` B ) ) ) |
| 70 |
66 69
|
mpbird |
|- ( ( ph /\ q e. A ) -> C <_ ( q pCnt ( # ` B ) ) ) |
| 71 |
|
eluz2 |
|- ( ( q pCnt ( # ` B ) ) e. ( ZZ>= ` C ) <-> ( C e. ZZ /\ ( q pCnt ( # ` B ) ) e. ZZ /\ C <_ ( q pCnt ( # ` B ) ) ) ) |
| 72 |
62 63 70 71
|
syl3anbrc |
|- ( ( ph /\ q e. A ) -> ( q pCnt ( # ` B ) ) e. ( ZZ>= ` C ) ) |
| 73 |
|
dvdsexp |
|- ( ( q e. ZZ /\ C e. NN0 /\ ( q pCnt ( # ` B ) ) e. ( ZZ>= ` C ) ) -> ( q ^ C ) || ( q ^ ( q pCnt ( # ` B ) ) ) ) |
| 74 |
61 11 72 73
|
syl3anc |
|- ( ( ph /\ q e. A ) -> ( q ^ C ) || ( q ^ ( q pCnt ( # ` B ) ) ) ) |
| 75 |
12 74
|
eqbrtrd |
|- ( ( ph /\ q e. A ) -> ( # ` ( T ` q ) ) || ( q ^ ( q pCnt ( # ` B ) ) ) ) |
| 76 |
75
|
adantr |
|- ( ( ( ph /\ q e. A ) /\ x e. ( T ` q ) ) -> ( # ` ( T ` q ) ) || ( q ^ ( q pCnt ( # ` B ) ) ) ) |
| 77 |
34 39 54 59 76
|
dvdstrd |
|- ( ( ( ph /\ q e. A ) /\ x e. ( T ` q ) ) -> ( O ` x ) || ( q ^ ( q pCnt ( # ` B ) ) ) ) |
| 78 |
30 77
|
ssrabdv |
|- ( ( ph /\ q e. A ) -> ( T ` q ) C_ { x e. B | ( O ` x ) || ( q ^ ( q pCnt ( # ` B ) ) ) } ) |
| 79 |
|
id |
|- ( p = q -> p = q ) |
| 80 |
|
oveq1 |
|- ( p = q -> ( p pCnt ( # ` B ) ) = ( q pCnt ( # ` B ) ) ) |
| 81 |
79 80
|
oveq12d |
|- ( p = q -> ( p ^ ( p pCnt ( # ` B ) ) ) = ( q ^ ( q pCnt ( # ` B ) ) ) ) |
| 82 |
81
|
breq2d |
|- ( p = q -> ( ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) <-> ( O ` x ) || ( q ^ ( q pCnt ( # ` B ) ) ) ) ) |
| 83 |
82
|
rabbidv |
|- ( p = q -> { x e. B | ( O ` x ) || ( p ^ ( p pCnt ( # ` B ) ) ) } = { x e. B | ( O ` x ) || ( q ^ ( q pCnt ( # ` B ) ) ) } ) |
| 84 |
83 3 18
|
fvmpt3i |
|- ( q e. A -> ( S ` q ) = { x e. B | ( O ` x ) || ( q ^ ( q pCnt ( # ` B ) ) ) } ) |
| 85 |
84
|
adantl |
|- ( ( ph /\ q e. A ) -> ( S ` q ) = { x e. B | ( O ` x ) || ( q ^ ( q pCnt ( # ` B ) ) ) } ) |
| 86 |
78 85
|
sseqtrrd |
|- ( ( ph /\ q e. A ) -> ( T ` q ) C_ ( S ` q ) ) |
| 87 |
52
|
nnnn0d |
|- ( ( ph /\ q e. A ) -> ( q ^ ( q pCnt ( # ` B ) ) ) e. NN0 ) |
| 88 |
|
pcdvds |
|- ( ( q e. Prime /\ ( # ` B ) e. NN ) -> ( q ^ ( q pCnt ( # ` B ) ) ) || ( # ` B ) ) |
| 89 |
40 50 88
|
syl2anc |
|- ( ( ph /\ q e. A ) -> ( q ^ ( q pCnt ( # ` B ) ) ) || ( # ` B ) ) |
| 90 |
13
|
adantr |
|- ( ( ph /\ q e. A ) -> G dom DProd T ) |
| 91 |
10
|
adantr |
|- ( ( ph /\ q e. A ) -> dom T = A ) |
| 92 |
8
|
adantr |
|- ( ( ph /\ q e. A ) -> D C_ A ) |
| 93 |
90 91 92
|
dprdres |
|- ( ( ph /\ q e. A ) -> ( G dom DProd ( T |` D ) /\ ( G DProd ( T |` D ) ) C_ ( G DProd T ) ) ) |
| 94 |
93
|
simpld |
|- ( ( ph /\ q e. A ) -> G dom DProd ( T |` D ) ) |
| 95 |
14
|
adantr |
|- ( ( ph /\ q e. A ) -> T : A --> ( SubGrp ` G ) ) |
| 96 |
95 92
|
fssresd |
|- ( ( ph /\ q e. A ) -> ( T |` D ) : D --> ( SubGrp ` G ) ) |
| 97 |
96
|
fdmd |
|- ( ( ph /\ q e. A ) -> dom ( T |` D ) = D ) |
| 98 |
|
difssd |
|- ( ( ph /\ q e. A ) -> ( D \ { q } ) C_ D ) |
| 99 |
94 97 98
|
dprdres |
|- ( ( ph /\ q e. A ) -> ( G dom DProd ( ( T |` D ) |` ( D \ { q } ) ) /\ ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) C_ ( G DProd ( T |` D ) ) ) ) |
| 100 |
99
|
simpld |
|- ( ( ph /\ q e. A ) -> G dom DProd ( ( T |` D ) |` ( D \ { q } ) ) ) |
| 101 |
|
dprdsubg |
|- ( G dom DProd ( ( T |` D ) |` ( D \ { q } ) ) -> ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) e. ( SubGrp ` G ) ) |
| 102 |
100 101
|
syl |
|- ( ( ph /\ q e. A ) -> ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) e. ( SubGrp ` G ) ) |
| 103 |
1
|
lagsubg |
|- ( ( ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) e. ( SubGrp ` G ) /\ B e. Fin ) -> ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) || ( # ` B ) ) |
| 104 |
102 23 103
|
syl2anc |
|- ( ( ph /\ q e. A ) -> ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) || ( # ` B ) ) |
| 105 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 106 |
105
|
subg0cl |
|- ( ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) e. ( SubGrp ` G ) -> ( 0g ` G ) e. ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) |
| 107 |
102 106
|
syl |
|- ( ( ph /\ q e. A ) -> ( 0g ` G ) e. ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) |
| 108 |
107
|
ne0d |
|- ( ( ph /\ q e. A ) -> ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) =/= (/) ) |
| 109 |
1
|
dprdssv |
|- ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) C_ B |
| 110 |
|
ssfi |
|- ( ( B e. Fin /\ ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) C_ B ) -> ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) e. Fin ) |
| 111 |
23 109 110
|
sylancl |
|- ( ( ph /\ q e. A ) -> ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) e. Fin ) |
| 112 |
|
hashnncl |
|- ( ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) e. Fin -> ( ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) e. NN <-> ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) =/= (/) ) ) |
| 113 |
111 112
|
syl |
|- ( ( ph /\ q e. A ) -> ( ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) e. NN <-> ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) =/= (/) ) ) |
| 114 |
108 113
|
mpbird |
|- ( ( ph /\ q e. A ) -> ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) e. NN ) |
| 115 |
114
|
nnzd |
|- ( ( ph /\ q e. A ) -> ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) e. ZZ ) |
| 116 |
|
id |
|- ( x = q -> x = q ) |
| 117 |
|
sneq |
|- ( x = q -> { x } = { q } ) |
| 118 |
117
|
difeq2d |
|- ( x = q -> ( D \ { x } ) = ( D \ { q } ) ) |
| 119 |
118
|
reseq2d |
|- ( x = q -> ( ( T |` D ) |` ( D \ { x } ) ) = ( ( T |` D ) |` ( D \ { q } ) ) ) |
| 120 |
119
|
oveq2d |
|- ( x = q -> ( G DProd ( ( T |` D ) |` ( D \ { x } ) ) ) = ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) |
| 121 |
120
|
fveq2d |
|- ( x = q -> ( # ` ( G DProd ( ( T |` D ) |` ( D \ { x } ) ) ) ) = ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) ) |
| 122 |
116 121
|
breq12d |
|- ( x = q -> ( x || ( # ` ( G DProd ( ( T |` D ) |` ( D \ { x } ) ) ) ) <-> q || ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) ) ) |
| 123 |
122
|
notbid |
|- ( x = q -> ( -. x || ( # ` ( G DProd ( ( T |` D ) |` ( D \ { x } ) ) ) ) <-> -. q || ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) ) ) |
| 124 |
|
eqid |
|- ( p e. D |-> { y e. B | ( O ` y ) || ( p ^ ( p pCnt ( # ` B ) ) ) } ) = ( p e. D |-> { y e. B | ( O ` y ) || ( p ^ ( p pCnt ( # ` B ) ) ) } ) |
| 125 |
4
|
adantr |
|- ( ( ph /\ x e. Prime ) -> G e. Abel ) |
| 126 |
5
|
adantr |
|- ( ( ph /\ x e. Prime ) -> B e. Fin ) |
| 127 |
7
|
ssrab3 |
|- D C_ Prime |
| 128 |
127
|
a1i |
|- ( ( ph /\ x e. Prime ) -> D C_ Prime ) |
| 129 |
|
ssidd |
|- ( ( ph /\ x e. Prime ) -> D C_ D ) |
| 130 |
13 10 8
|
dprdres |
|- ( ph -> ( G dom DProd ( T |` D ) /\ ( G DProd ( T |` D ) ) C_ ( G DProd T ) ) ) |
| 131 |
130
|
simpld |
|- ( ph -> G dom DProd ( T |` D ) ) |
| 132 |
|
dprdsubg |
|- ( G dom DProd ( T |` D ) -> ( G DProd ( T |` D ) ) e. ( SubGrp ` G ) ) |
| 133 |
131 132
|
syl |
|- ( ph -> ( G DProd ( T |` D ) ) e. ( SubGrp ` G ) ) |
| 134 |
|
difssd |
|- ( ph -> ( A \ D ) C_ A ) |
| 135 |
13 10 134
|
dprdres |
|- ( ph -> ( G dom DProd ( T |` ( A \ D ) ) /\ ( G DProd ( T |` ( A \ D ) ) ) C_ ( G DProd T ) ) ) |
| 136 |
135
|
simpld |
|- ( ph -> G dom DProd ( T |` ( A \ D ) ) ) |
| 137 |
|
dprdsubg |
|- ( G dom DProd ( T |` ( A \ D ) ) -> ( G DProd ( T |` ( A \ D ) ) ) e. ( SubGrp ` G ) ) |
| 138 |
136 137
|
syl |
|- ( ph -> ( G DProd ( T |` ( A \ D ) ) ) e. ( SubGrp ` G ) ) |
| 139 |
|
difss |
|- ( A \ D ) C_ A |
| 140 |
|
fssres |
|- ( ( T : A --> ( SubGrp ` G ) /\ ( A \ D ) C_ A ) -> ( T |` ( A \ D ) ) : ( A \ D ) --> ( SubGrp ` G ) ) |
| 141 |
14 139 140
|
sylancl |
|- ( ph -> ( T |` ( A \ D ) ) : ( A \ D ) --> ( SubGrp ` G ) ) |
| 142 |
141
|
fdmd |
|- ( ph -> dom ( T |` ( A \ D ) ) = ( A \ D ) ) |
| 143 |
|
fvres |
|- ( q e. ( A \ D ) -> ( ( T |` ( A \ D ) ) ` q ) = ( T ` q ) ) |
| 144 |
143
|
adantl |
|- ( ( ph /\ q e. ( A \ D ) ) -> ( ( T |` ( A \ D ) ) ` q ) = ( T ` q ) ) |
| 145 |
|
eldif |
|- ( q e. ( A \ D ) <-> ( q e. A /\ -. q e. D ) ) |
| 146 |
35
|
adantrr |
|- ( ( ph /\ ( q e. A /\ -. q e. D ) ) -> ( T ` q ) e. Fin ) |
| 147 |
105
|
subg0cl |
|- ( ( T ` q ) e. ( SubGrp ` G ) -> ( 0g ` G ) e. ( T ` q ) ) |
| 148 |
28 147
|
syl |
|- ( ( ph /\ q e. A ) -> ( 0g ` G ) e. ( T ` q ) ) |
| 149 |
148
|
snssd |
|- ( ( ph /\ q e. A ) -> { ( 0g ` G ) } C_ ( T ` q ) ) |
| 150 |
149
|
adantrr |
|- ( ( ph /\ ( q e. A /\ -. q e. D ) ) -> { ( 0g ` G ) } C_ ( T ` q ) ) |
| 151 |
|
fvex |
|- ( 0g ` G ) e. _V |
| 152 |
|
hashsng |
|- ( ( 0g ` G ) e. _V -> ( # ` { ( 0g ` G ) } ) = 1 ) |
| 153 |
151 152
|
ax-mp |
|- ( # ` { ( 0g ` G ) } ) = 1 |
| 154 |
12
|
adantrr |
|- ( ( ph /\ ( q e. A /\ -. q e. D ) ) -> ( # ` ( T ` q ) ) = ( q ^ C ) ) |
| 155 |
40
|
adantr |
|- ( ( ( ph /\ q e. A ) /\ C e. NN ) -> q e. Prime ) |
| 156 |
|
iddvdsexp |
|- ( ( q e. ZZ /\ C e. NN ) -> q || ( q ^ C ) ) |
| 157 |
61 156
|
sylan |
|- ( ( ( ph /\ q e. A ) /\ C e. NN ) -> q || ( q ^ C ) ) |
| 158 |
66
|
adantr |
|- ( ( ( ph /\ q e. A ) /\ C e. NN ) -> ( q ^ C ) || ( # ` B ) ) |
| 159 |
12 38
|
eqeltrrd |
|- ( ( ph /\ q e. A ) -> ( q ^ C ) e. ZZ ) |
| 160 |
|
dvdstr |
|- ( ( q e. ZZ /\ ( q ^ C ) e. ZZ /\ ( # ` B ) e. ZZ ) -> ( ( q || ( q ^ C ) /\ ( q ^ C ) || ( # ` B ) ) -> q || ( # ` B ) ) ) |
| 161 |
61 159 67 160
|
syl3anc |
|- ( ( ph /\ q e. A ) -> ( ( q || ( q ^ C ) /\ ( q ^ C ) || ( # ` B ) ) -> q || ( # ` B ) ) ) |
| 162 |
161
|
adantr |
|- ( ( ( ph /\ q e. A ) /\ C e. NN ) -> ( ( q || ( q ^ C ) /\ ( q ^ C ) || ( # ` B ) ) -> q || ( # ` B ) ) ) |
| 163 |
157 158 162
|
mp2and |
|- ( ( ( ph /\ q e. A ) /\ C e. NN ) -> q || ( # ` B ) ) |
| 164 |
|
breq1 |
|- ( w = q -> ( w || ( # ` B ) <-> q || ( # ` B ) ) ) |
| 165 |
164 7
|
elrab2 |
|- ( q e. D <-> ( q e. Prime /\ q || ( # ` B ) ) ) |
| 166 |
155 163 165
|
sylanbrc |
|- ( ( ( ph /\ q e. A ) /\ C e. NN ) -> q e. D ) |
| 167 |
166
|
ex |
|- ( ( ph /\ q e. A ) -> ( C e. NN -> q e. D ) ) |
| 168 |
167
|
con3d |
|- ( ( ph /\ q e. A ) -> ( -. q e. D -> -. C e. NN ) ) |
| 169 |
168
|
impr |
|- ( ( ph /\ ( q e. A /\ -. q e. D ) ) -> -. C e. NN ) |
| 170 |
11
|
adantrr |
|- ( ( ph /\ ( q e. A /\ -. q e. D ) ) -> C e. NN0 ) |
| 171 |
|
elnn0 |
|- ( C e. NN0 <-> ( C e. NN \/ C = 0 ) ) |
| 172 |
170 171
|
sylib |
|- ( ( ph /\ ( q e. A /\ -. q e. D ) ) -> ( C e. NN \/ C = 0 ) ) |
| 173 |
172
|
ord |
|- ( ( ph /\ ( q e. A /\ -. q e. D ) ) -> ( -. C e. NN -> C = 0 ) ) |
| 174 |
169 173
|
mpd |
|- ( ( ph /\ ( q e. A /\ -. q e. D ) ) -> C = 0 ) |
| 175 |
174
|
oveq2d |
|- ( ( ph /\ ( q e. A /\ -. q e. D ) ) -> ( q ^ C ) = ( q ^ 0 ) ) |
| 176 |
42
|
adantrr |
|- ( ( ph /\ ( q e. A /\ -. q e. D ) ) -> q e. NN ) |
| 177 |
176
|
nncnd |
|- ( ( ph /\ ( q e. A /\ -. q e. D ) ) -> q e. CC ) |
| 178 |
177
|
exp0d |
|- ( ( ph /\ ( q e. A /\ -. q e. D ) ) -> ( q ^ 0 ) = 1 ) |
| 179 |
154 175 178
|
3eqtrd |
|- ( ( ph /\ ( q e. A /\ -. q e. D ) ) -> ( # ` ( T ` q ) ) = 1 ) |
| 180 |
153 179
|
eqtr4id |
|- ( ( ph /\ ( q e. A /\ -. q e. D ) ) -> ( # ` { ( 0g ` G ) } ) = ( # ` ( T ` q ) ) ) |
| 181 |
|
snfi |
|- { ( 0g ` G ) } e. Fin |
| 182 |
|
hashen |
|- ( ( { ( 0g ` G ) } e. Fin /\ ( T ` q ) e. Fin ) -> ( ( # ` { ( 0g ` G ) } ) = ( # ` ( T ` q ) ) <-> { ( 0g ` G ) } ~~ ( T ` q ) ) ) |
| 183 |
181 146 182
|
sylancr |
|- ( ( ph /\ ( q e. A /\ -. q e. D ) ) -> ( ( # ` { ( 0g ` G ) } ) = ( # ` ( T ` q ) ) <-> { ( 0g ` G ) } ~~ ( T ` q ) ) ) |
| 184 |
180 183
|
mpbid |
|- ( ( ph /\ ( q e. A /\ -. q e. D ) ) -> { ( 0g ` G ) } ~~ ( T ` q ) ) |
| 185 |
|
fisseneq |
|- ( ( ( T ` q ) e. Fin /\ { ( 0g ` G ) } C_ ( T ` q ) /\ { ( 0g ` G ) } ~~ ( T ` q ) ) -> { ( 0g ` G ) } = ( T ` q ) ) |
| 186 |
146 150 184 185
|
syl3anc |
|- ( ( ph /\ ( q e. A /\ -. q e. D ) ) -> { ( 0g ` G ) } = ( T ` q ) ) |
| 187 |
105
|
subg0cl |
|- ( ( G DProd ( T |` D ) ) e. ( SubGrp ` G ) -> ( 0g ` G ) e. ( G DProd ( T |` D ) ) ) |
| 188 |
133 187
|
syl |
|- ( ph -> ( 0g ` G ) e. ( G DProd ( T |` D ) ) ) |
| 189 |
188
|
adantr |
|- ( ( ph /\ ( q e. A /\ -. q e. D ) ) -> ( 0g ` G ) e. ( G DProd ( T |` D ) ) ) |
| 190 |
189
|
snssd |
|- ( ( ph /\ ( q e. A /\ -. q e. D ) ) -> { ( 0g ` G ) } C_ ( G DProd ( T |` D ) ) ) |
| 191 |
186 190
|
eqsstrrd |
|- ( ( ph /\ ( q e. A /\ -. q e. D ) ) -> ( T ` q ) C_ ( G DProd ( T |` D ) ) ) |
| 192 |
145 191
|
sylan2b |
|- ( ( ph /\ q e. ( A \ D ) ) -> ( T ` q ) C_ ( G DProd ( T |` D ) ) ) |
| 193 |
144 192
|
eqsstrd |
|- ( ( ph /\ q e. ( A \ D ) ) -> ( ( T |` ( A \ D ) ) ` q ) C_ ( G DProd ( T |` D ) ) ) |
| 194 |
136 142 133 193
|
dprdlub |
|- ( ph -> ( G DProd ( T |` ( A \ D ) ) ) C_ ( G DProd ( T |` D ) ) ) |
| 195 |
|
eqid |
|- ( LSSum ` G ) = ( LSSum ` G ) |
| 196 |
195
|
lsmss2 |
|- ( ( ( G DProd ( T |` D ) ) e. ( SubGrp ` G ) /\ ( G DProd ( T |` ( A \ D ) ) ) e. ( SubGrp ` G ) /\ ( G DProd ( T |` ( A \ D ) ) ) C_ ( G DProd ( T |` D ) ) ) -> ( ( G DProd ( T |` D ) ) ( LSSum ` G ) ( G DProd ( T |` ( A \ D ) ) ) ) = ( G DProd ( T |` D ) ) ) |
| 197 |
133 138 194 196
|
syl3anc |
|- ( ph -> ( ( G DProd ( T |` D ) ) ( LSSum ` G ) ( G DProd ( T |` ( A \ D ) ) ) ) = ( G DProd ( T |` D ) ) ) |
| 198 |
|
disjdif |
|- ( D i^i ( A \ D ) ) = (/) |
| 199 |
198
|
a1i |
|- ( ph -> ( D i^i ( A \ D ) ) = (/) ) |
| 200 |
|
undif2 |
|- ( D u. ( A \ D ) ) = ( D u. A ) |
| 201 |
|
ssequn1 |
|- ( D C_ A <-> ( D u. A ) = A ) |
| 202 |
8 201
|
sylib |
|- ( ph -> ( D u. A ) = A ) |
| 203 |
200 202
|
eqtr2id |
|- ( ph -> A = ( D u. ( A \ D ) ) ) |
| 204 |
14 199 203 195 13
|
dprdsplit |
|- ( ph -> ( G DProd T ) = ( ( G DProd ( T |` D ) ) ( LSSum ` G ) ( G DProd ( T |` ( A \ D ) ) ) ) ) |
| 205 |
9
|
simprd |
|- ( ph -> ( G DProd T ) = B ) |
| 206 |
204 205
|
eqtr3d |
|- ( ph -> ( ( G DProd ( T |` D ) ) ( LSSum ` G ) ( G DProd ( T |` ( A \ D ) ) ) ) = B ) |
| 207 |
197 206
|
eqtr3d |
|- ( ph -> ( G DProd ( T |` D ) ) = B ) |
| 208 |
131 207
|
jca |
|- ( ph -> ( G dom DProd ( T |` D ) /\ ( G DProd ( T |` D ) ) = B ) ) |
| 209 |
208
|
adantr |
|- ( ( ph /\ x e. Prime ) -> ( G dom DProd ( T |` D ) /\ ( G DProd ( T |` D ) ) = B ) ) |
| 210 |
14 8
|
fssresd |
|- ( ph -> ( T |` D ) : D --> ( SubGrp ` G ) ) |
| 211 |
210
|
fdmd |
|- ( ph -> dom ( T |` D ) = D ) |
| 212 |
211
|
adantr |
|- ( ( ph /\ x e. Prime ) -> dom ( T |` D ) = D ) |
| 213 |
8
|
sselda |
|- ( ( ph /\ q e. D ) -> q e. A ) |
| 214 |
213 11
|
syldan |
|- ( ( ph /\ q e. D ) -> C e. NN0 ) |
| 215 |
214
|
adantlr |
|- ( ( ( ph /\ x e. Prime ) /\ q e. D ) -> C e. NN0 ) |
| 216 |
|
fvres |
|- ( q e. D -> ( ( T |` D ) ` q ) = ( T ` q ) ) |
| 217 |
216
|
adantl |
|- ( ( ph /\ q e. D ) -> ( ( T |` D ) ` q ) = ( T ` q ) ) |
| 218 |
217
|
fveq2d |
|- ( ( ph /\ q e. D ) -> ( # ` ( ( T |` D ) ` q ) ) = ( # ` ( T ` q ) ) ) |
| 219 |
213 12
|
syldan |
|- ( ( ph /\ q e. D ) -> ( # ` ( T ` q ) ) = ( q ^ C ) ) |
| 220 |
218 219
|
eqtrd |
|- ( ( ph /\ q e. D ) -> ( # ` ( ( T |` D ) ` q ) ) = ( q ^ C ) ) |
| 221 |
220
|
adantlr |
|- ( ( ( ph /\ x e. Prime ) /\ q e. D ) -> ( # ` ( ( T |` D ) ` q ) ) = ( q ^ C ) ) |
| 222 |
|
simpr |
|- ( ( ph /\ x e. Prime ) -> x e. Prime ) |
| 223 |
|
fzfid |
|- ( ph -> ( 1 ... ( # ` B ) ) e. Fin ) |
| 224 |
|
prmnn |
|- ( w e. Prime -> w e. NN ) |
| 225 |
224
|
3ad2ant2 |
|- ( ( ph /\ w e. Prime /\ w || ( # ` B ) ) -> w e. NN ) |
| 226 |
|
prmz |
|- ( w e. Prime -> w e. ZZ ) |
| 227 |
|
dvdsle |
|- ( ( w e. ZZ /\ ( # ` B ) e. NN ) -> ( w || ( # ` B ) -> w <_ ( # ` B ) ) ) |
| 228 |
226 49 227
|
syl2anr |
|- ( ( ph /\ w e. Prime ) -> ( w || ( # ` B ) -> w <_ ( # ` B ) ) ) |
| 229 |
228
|
3impia |
|- ( ( ph /\ w e. Prime /\ w || ( # ` B ) ) -> w <_ ( # ` B ) ) |
| 230 |
49
|
nnzd |
|- ( ph -> ( # ` B ) e. ZZ ) |
| 231 |
230
|
3ad2ant1 |
|- ( ( ph /\ w e. Prime /\ w || ( # ` B ) ) -> ( # ` B ) e. ZZ ) |
| 232 |
|
fznn |
|- ( ( # ` B ) e. ZZ -> ( w e. ( 1 ... ( # ` B ) ) <-> ( w e. NN /\ w <_ ( # ` B ) ) ) ) |
| 233 |
231 232
|
syl |
|- ( ( ph /\ w e. Prime /\ w || ( # ` B ) ) -> ( w e. ( 1 ... ( # ` B ) ) <-> ( w e. NN /\ w <_ ( # ` B ) ) ) ) |
| 234 |
225 229 233
|
mpbir2and |
|- ( ( ph /\ w e. Prime /\ w || ( # ` B ) ) -> w e. ( 1 ... ( # ` B ) ) ) |
| 235 |
234
|
rabssdv |
|- ( ph -> { w e. Prime | w || ( # ` B ) } C_ ( 1 ... ( # ` B ) ) ) |
| 236 |
7 235
|
eqsstrid |
|- ( ph -> D C_ ( 1 ... ( # ` B ) ) ) |
| 237 |
223 236
|
ssfid |
|- ( ph -> D e. Fin ) |
| 238 |
237
|
adantr |
|- ( ( ph /\ x e. Prime ) -> D e. Fin ) |
| 239 |
1 2 124 125 126 128 7 129 209 212 215 221 222 238
|
ablfac1eulem |
|- ( ( ph /\ x e. Prime ) -> -. x || ( # ` ( G DProd ( ( T |` D ) |` ( D \ { x } ) ) ) ) ) |
| 240 |
239
|
ralrimiva |
|- ( ph -> A. x e. Prime -. x || ( # ` ( G DProd ( ( T |` D ) |` ( D \ { x } ) ) ) ) ) |
| 241 |
240
|
adantr |
|- ( ( ph /\ q e. A ) -> A. x e. Prime -. x || ( # ` ( G DProd ( ( T |` D ) |` ( D \ { x } ) ) ) ) ) |
| 242 |
123 241 40
|
rspcdva |
|- ( ( ph /\ q e. A ) -> -. q || ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) ) |
| 243 |
|
coprm |
|- ( ( q e. Prime /\ ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) e. ZZ ) -> ( -. q || ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) <-> ( q gcd ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) ) = 1 ) ) |
| 244 |
40 115 243
|
syl2anc |
|- ( ( ph /\ q e. A ) -> ( -. q || ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) <-> ( q gcd ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) ) = 1 ) ) |
| 245 |
242 244
|
mpbid |
|- ( ( ph /\ q e. A ) -> ( q gcd ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) ) = 1 ) |
| 246 |
|
rpexp1i |
|- ( ( q e. ZZ /\ ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) e. ZZ /\ ( q pCnt ( # ` B ) ) e. NN0 ) -> ( ( q gcd ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) ) = 1 -> ( ( q ^ ( q pCnt ( # ` B ) ) ) gcd ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) ) = 1 ) ) |
| 247 |
61 115 51 246
|
syl3anc |
|- ( ( ph /\ q e. A ) -> ( ( q gcd ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) ) = 1 -> ( ( q ^ ( q pCnt ( # ` B ) ) ) gcd ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) ) = 1 ) ) |
| 248 |
245 247
|
mpd |
|- ( ( ph /\ q e. A ) -> ( ( q ^ ( q pCnt ( # ` B ) ) ) gcd ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) ) = 1 ) |
| 249 |
|
coprmdvds2 |
|- ( ( ( ( q ^ ( q pCnt ( # ` B ) ) ) e. ZZ /\ ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) e. ZZ /\ ( # ` B ) e. ZZ ) /\ ( ( q ^ ( q pCnt ( # ` B ) ) ) gcd ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) ) = 1 ) -> ( ( ( q ^ ( q pCnt ( # ` B ) ) ) || ( # ` B ) /\ ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) || ( # ` B ) ) -> ( ( q ^ ( q pCnt ( # ` B ) ) ) x. ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) ) || ( # ` B ) ) ) |
| 250 |
53 115 67 248 249
|
syl31anc |
|- ( ( ph /\ q e. A ) -> ( ( ( q ^ ( q pCnt ( # ` B ) ) ) || ( # ` B ) /\ ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) || ( # ` B ) ) -> ( ( q ^ ( q pCnt ( # ` B ) ) ) x. ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) ) || ( # ` B ) ) ) |
| 251 |
89 104 250
|
mp2and |
|- ( ( ph /\ q e. A ) -> ( ( q ^ ( q pCnt ( # ` B ) ) ) x. ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) ) || ( # ` B ) ) |
| 252 |
|
eqid |
|- ( Cntz ` G ) = ( Cntz ` G ) |
| 253 |
|
inss1 |
|- ( D i^i { q } ) C_ D |
| 254 |
253
|
a1i |
|- ( ( ph /\ q e. A ) -> ( D i^i { q } ) C_ D ) |
| 255 |
94 97 254
|
dprdres |
|- ( ( ph /\ q e. A ) -> ( G dom DProd ( ( T |` D ) |` ( D i^i { q } ) ) /\ ( G DProd ( ( T |` D ) |` ( D i^i { q } ) ) ) C_ ( G DProd ( T |` D ) ) ) ) |
| 256 |
255
|
simpld |
|- ( ( ph /\ q e. A ) -> G dom DProd ( ( T |` D ) |` ( D i^i { q } ) ) ) |
| 257 |
|
dprdsubg |
|- ( G dom DProd ( ( T |` D ) |` ( D i^i { q } ) ) -> ( G DProd ( ( T |` D ) |` ( D i^i { q } ) ) ) e. ( SubGrp ` G ) ) |
| 258 |
256 257
|
syl |
|- ( ( ph /\ q e. A ) -> ( G DProd ( ( T |` D ) |` ( D i^i { q } ) ) ) e. ( SubGrp ` G ) ) |
| 259 |
|
inass |
|- ( ( D i^i { q } ) i^i ( D \ { q } ) ) = ( D i^i ( { q } i^i ( D \ { q } ) ) ) |
| 260 |
|
disjdif |
|- ( { q } i^i ( D \ { q } ) ) = (/) |
| 261 |
260
|
ineq2i |
|- ( D i^i ( { q } i^i ( D \ { q } ) ) ) = ( D i^i (/) ) |
| 262 |
|
in0 |
|- ( D i^i (/) ) = (/) |
| 263 |
259 261 262
|
3eqtri |
|- ( ( D i^i { q } ) i^i ( D \ { q } ) ) = (/) |
| 264 |
263
|
a1i |
|- ( ( ph /\ q e. A ) -> ( ( D i^i { q } ) i^i ( D \ { q } ) ) = (/) ) |
| 265 |
94 97 254 98 264 105
|
dprddisj2 |
|- ( ( ph /\ q e. A ) -> ( ( G DProd ( ( T |` D ) |` ( D i^i { q } ) ) ) i^i ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) = { ( 0g ` G ) } ) |
| 266 |
94 97 254 98 264 252
|
dprdcntz2 |
|- ( ( ph /\ q e. A ) -> ( G DProd ( ( T |` D ) |` ( D i^i { q } ) ) ) C_ ( ( Cntz ` G ) ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) ) |
| 267 |
1
|
dprdssv |
|- ( G DProd ( ( T |` D ) |` ( D i^i { q } ) ) ) C_ B |
| 268 |
|
ssfi |
|- ( ( B e. Fin /\ ( G DProd ( ( T |` D ) |` ( D i^i { q } ) ) ) C_ B ) -> ( G DProd ( ( T |` D ) |` ( D i^i { q } ) ) ) e. Fin ) |
| 269 |
23 267 268
|
sylancl |
|- ( ( ph /\ q e. A ) -> ( G DProd ( ( T |` D ) |` ( D i^i { q } ) ) ) e. Fin ) |
| 270 |
195 105 252 258 102 265 266 269 111
|
lsmhash |
|- ( ( ph /\ q e. A ) -> ( # ` ( ( G DProd ( ( T |` D ) |` ( D i^i { q } ) ) ) ( LSSum ` G ) ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) ) = ( ( # ` ( G DProd ( ( T |` D ) |` ( D i^i { q } ) ) ) ) x. ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) ) ) |
| 271 |
|
inundif |
|- ( ( D i^i { q } ) u. ( D \ { q } ) ) = D |
| 272 |
271
|
eqcomi |
|- D = ( ( D i^i { q } ) u. ( D \ { q } ) ) |
| 273 |
272
|
a1i |
|- ( ( ph /\ q e. A ) -> D = ( ( D i^i { q } ) u. ( D \ { q } ) ) ) |
| 274 |
96 264 273 195 94
|
dprdsplit |
|- ( ( ph /\ q e. A ) -> ( G DProd ( T |` D ) ) = ( ( G DProd ( ( T |` D ) |` ( D i^i { q } ) ) ) ( LSSum ` G ) ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) ) |
| 275 |
207
|
adantr |
|- ( ( ph /\ q e. A ) -> ( G DProd ( T |` D ) ) = B ) |
| 276 |
274 275
|
eqtr3d |
|- ( ( ph /\ q e. A ) -> ( ( G DProd ( ( T |` D ) |` ( D i^i { q } ) ) ) ( LSSum ` G ) ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) = B ) |
| 277 |
276
|
fveq2d |
|- ( ( ph /\ q e. A ) -> ( # ` ( ( G DProd ( ( T |` D ) |` ( D i^i { q } ) ) ) ( LSSum ` G ) ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) ) = ( # ` B ) ) |
| 278 |
|
snssi |
|- ( q e. D -> { q } C_ D ) |
| 279 |
278
|
adantl |
|- ( ( ( ph /\ q e. A ) /\ q e. D ) -> { q } C_ D ) |
| 280 |
|
sseqin2 |
|- ( { q } C_ D <-> ( D i^i { q } ) = { q } ) |
| 281 |
279 280
|
sylib |
|- ( ( ( ph /\ q e. A ) /\ q e. D ) -> ( D i^i { q } ) = { q } ) |
| 282 |
281
|
reseq2d |
|- ( ( ( ph /\ q e. A ) /\ q e. D ) -> ( ( T |` D ) |` ( D i^i { q } ) ) = ( ( T |` D ) |` { q } ) ) |
| 283 |
282
|
oveq2d |
|- ( ( ( ph /\ q e. A ) /\ q e. D ) -> ( G DProd ( ( T |` D ) |` ( D i^i { q } ) ) ) = ( G DProd ( ( T |` D ) |` { q } ) ) ) |
| 284 |
94
|
adantr |
|- ( ( ( ph /\ q e. A ) /\ q e. D ) -> G dom DProd ( T |` D ) ) |
| 285 |
211
|
ad2antrr |
|- ( ( ( ph /\ q e. A ) /\ q e. D ) -> dom ( T |` D ) = D ) |
| 286 |
|
simpr |
|- ( ( ( ph /\ q e. A ) /\ q e. D ) -> q e. D ) |
| 287 |
284 285 286
|
dpjlem |
|- ( ( ( ph /\ q e. A ) /\ q e. D ) -> ( G DProd ( ( T |` D ) |` { q } ) ) = ( ( T |` D ) ` q ) ) |
| 288 |
216
|
adantl |
|- ( ( ( ph /\ q e. A ) /\ q e. D ) -> ( ( T |` D ) ` q ) = ( T ` q ) ) |
| 289 |
283 287 288
|
3eqtrd |
|- ( ( ( ph /\ q e. A ) /\ q e. D ) -> ( G DProd ( ( T |` D ) |` ( D i^i { q } ) ) ) = ( T ` q ) ) |
| 290 |
|
simprr |
|- ( ( ph /\ ( q e. A /\ -. q e. D ) ) -> -. q e. D ) |
| 291 |
|
disjsn |
|- ( ( D i^i { q } ) = (/) <-> -. q e. D ) |
| 292 |
290 291
|
sylibr |
|- ( ( ph /\ ( q e. A /\ -. q e. D ) ) -> ( D i^i { q } ) = (/) ) |
| 293 |
292
|
reseq2d |
|- ( ( ph /\ ( q e. A /\ -. q e. D ) ) -> ( ( T |` D ) |` ( D i^i { q } ) ) = ( ( T |` D ) |` (/) ) ) |
| 294 |
|
res0 |
|- ( ( T |` D ) |` (/) ) = (/) |
| 295 |
293 294
|
eqtrdi |
|- ( ( ph /\ ( q e. A /\ -. q e. D ) ) -> ( ( T |` D ) |` ( D i^i { q } ) ) = (/) ) |
| 296 |
295
|
oveq2d |
|- ( ( ph /\ ( q e. A /\ -. q e. D ) ) -> ( G DProd ( ( T |` D ) |` ( D i^i { q } ) ) ) = ( G DProd (/) ) ) |
| 297 |
105
|
dprd0 |
|- ( G e. Grp -> ( G dom DProd (/) /\ ( G DProd (/) ) = { ( 0g ` G ) } ) ) |
| 298 |
44 297
|
syl |
|- ( ph -> ( G dom DProd (/) /\ ( G DProd (/) ) = { ( 0g ` G ) } ) ) |
| 299 |
298
|
simprd |
|- ( ph -> ( G DProd (/) ) = { ( 0g ` G ) } ) |
| 300 |
299
|
adantr |
|- ( ( ph /\ ( q e. A /\ -. q e. D ) ) -> ( G DProd (/) ) = { ( 0g ` G ) } ) |
| 301 |
296 300 186
|
3eqtrd |
|- ( ( ph /\ ( q e. A /\ -. q e. D ) ) -> ( G DProd ( ( T |` D ) |` ( D i^i { q } ) ) ) = ( T ` q ) ) |
| 302 |
301
|
anassrs |
|- ( ( ( ph /\ q e. A ) /\ -. q e. D ) -> ( G DProd ( ( T |` D ) |` ( D i^i { q } ) ) ) = ( T ` q ) ) |
| 303 |
289 302
|
pm2.61dan |
|- ( ( ph /\ q e. A ) -> ( G DProd ( ( T |` D ) |` ( D i^i { q } ) ) ) = ( T ` q ) ) |
| 304 |
303
|
fveq2d |
|- ( ( ph /\ q e. A ) -> ( # ` ( G DProd ( ( T |` D ) |` ( D i^i { q } ) ) ) ) = ( # ` ( T ` q ) ) ) |
| 305 |
304
|
oveq1d |
|- ( ( ph /\ q e. A ) -> ( ( # ` ( G DProd ( ( T |` D ) |` ( D i^i { q } ) ) ) ) x. ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) ) = ( ( # ` ( T ` q ) ) x. ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) ) ) |
| 306 |
270 277 305
|
3eqtr3d |
|- ( ( ph /\ q e. A ) -> ( # ` B ) = ( ( # ` ( T ` q ) ) x. ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) ) ) |
| 307 |
251 306
|
breqtrd |
|- ( ( ph /\ q e. A ) -> ( ( q ^ ( q pCnt ( # ` B ) ) ) x. ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) ) || ( ( # ` ( T ` q ) ) x. ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) ) ) |
| 308 |
114
|
nnne0d |
|- ( ( ph /\ q e. A ) -> ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) =/= 0 ) |
| 309 |
|
dvdsmulcr |
|- ( ( ( q ^ ( q pCnt ( # ` B ) ) ) e. ZZ /\ ( # ` ( T ` q ) ) e. ZZ /\ ( ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) e. ZZ /\ ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) =/= 0 ) ) -> ( ( ( q ^ ( q pCnt ( # ` B ) ) ) x. ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) ) || ( ( # ` ( T ` q ) ) x. ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) ) <-> ( q ^ ( q pCnt ( # ` B ) ) ) || ( # ` ( T ` q ) ) ) ) |
| 310 |
53 38 115 308 309
|
syl112anc |
|- ( ( ph /\ q e. A ) -> ( ( ( q ^ ( q pCnt ( # ` B ) ) ) x. ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) ) || ( ( # ` ( T ` q ) ) x. ( # ` ( G DProd ( ( T |` D ) |` ( D \ { q } ) ) ) ) ) <-> ( q ^ ( q pCnt ( # ` B ) ) ) || ( # ` ( T ` q ) ) ) ) |
| 311 |
307 310
|
mpbid |
|- ( ( ph /\ q e. A ) -> ( q ^ ( q pCnt ( # ` B ) ) ) || ( # ` ( T ` q ) ) ) |
| 312 |
|
dvdseq |
|- ( ( ( ( # ` ( T ` q ) ) e. NN0 /\ ( q ^ ( q pCnt ( # ` B ) ) ) e. NN0 ) /\ ( ( # ` ( T ` q ) ) || ( q ^ ( q pCnt ( # ` B ) ) ) /\ ( q ^ ( q pCnt ( # ` B ) ) ) || ( # ` ( T ` q ) ) ) ) -> ( # ` ( T ` q ) ) = ( q ^ ( q pCnt ( # ` B ) ) ) ) |
| 313 |
37 87 75 311 312
|
syl22anc |
|- ( ( ph /\ q e. A ) -> ( # ` ( T ` q ) ) = ( q ^ ( q pCnt ( # ` B ) ) ) ) |
| 314 |
1 2 3 4 5 6
|
ablfac1a |
|- ( ( ph /\ q e. A ) -> ( # ` ( S ` q ) ) = ( q ^ ( q pCnt ( # ` B ) ) ) ) |
| 315 |
313 314
|
eqtr4d |
|- ( ( ph /\ q e. A ) -> ( # ` ( T ` q ) ) = ( # ` ( S ` q ) ) ) |
| 316 |
|
hashen |
|- ( ( ( T ` q ) e. Fin /\ ( S ` q ) e. Fin ) -> ( ( # ` ( T ` q ) ) = ( # ` ( S ` q ) ) <-> ( T ` q ) ~~ ( S ` q ) ) ) |
| 317 |
35 27 316
|
syl2anc |
|- ( ( ph /\ q e. A ) -> ( ( # ` ( T ` q ) ) = ( # ` ( S ` q ) ) <-> ( T ` q ) ~~ ( S ` q ) ) ) |
| 318 |
315 317
|
mpbid |
|- ( ( ph /\ q e. A ) -> ( T ` q ) ~~ ( S ` q ) ) |
| 319 |
|
fisseneq |
|- ( ( ( S ` q ) e. Fin /\ ( T ` q ) C_ ( S ` q ) /\ ( T ` q ) ~~ ( S ` q ) ) -> ( T ` q ) = ( S ` q ) ) |
| 320 |
27 86 318 319
|
syl3anc |
|- ( ( ph /\ q e. A ) -> ( T ` q ) = ( S ` q ) ) |
| 321 |
15 22 320
|
eqfnfvd |
|- ( ph -> T = S ) |