Metamath Proof Explorer


Theorem areacirclem5

Description: Finding the cross-section of a circle. (Contributed by Brendan Leahy, 31-Aug-2017) (Revised by Brendan Leahy, 22-Sep-2017) (Revised by Brendan Leahy, 11-Jul-2018)

Ref Expression
Hypothesis areacirc.1 S = x y | x y x 2 + y 2 R 2
Assertion areacirclem5 R 0 R t S t = if t R R 2 t 2 R 2 t 2

Proof

Step Hyp Ref Expression
1 areacirc.1 S = x y | x y x 2 + y 2 R 2
2 1 imaeq1i S t = x y | x y x 2 + y 2 R 2 t
3 vex t V
4 imasng t V x y | x y x 2 + y 2 R 2 t = u | t x y | x y x 2 + y 2 R 2 u
5 3 4 ax-mp x y | x y x 2 + y 2 R 2 t = u | t x y | x y x 2 + y 2 R 2 u
6 df-br t x y | x y x 2 + y 2 R 2 u t u x y | x y x 2 + y 2 R 2
7 vex u V
8 eleq1w x = t x t
9 8 anbi1d x = t x y t y
10 oveq1 x = t x 2 = t 2
11 10 oveq1d x = t x 2 + y 2 = t 2 + y 2
12 11 breq1d x = t x 2 + y 2 R 2 t 2 + y 2 R 2
13 9 12 anbi12d x = t x y x 2 + y 2 R 2 t y t 2 + y 2 R 2
14 eleq1w y = u y u
15 14 anbi2d y = u t y t u
16 oveq1 y = u y 2 = u 2
17 16 oveq2d y = u t 2 + y 2 = t 2 + u 2
18 17 breq1d y = u t 2 + y 2 R 2 t 2 + u 2 R 2
19 15 18 anbi12d y = u t y t 2 + y 2 R 2 t u t 2 + u 2 R 2
20 3 7 13 19 opelopab t u x y | x y x 2 + y 2 R 2 t u t 2 + u 2 R 2
21 anass t u t 2 + u 2 R 2 t u t 2 + u 2 R 2
22 6 20 21 3bitri t x y | x y x 2 + y 2 R 2 u t u t 2 + u 2 R 2
23 22 abbii u | t x y | x y x 2 + y 2 R 2 u = u | t u t 2 + u 2 R 2
24 2 5 23 3eqtri S t = u | t u t 2 + u 2 R 2
25 simp3 R 0 R t t
26 25 biantrurd R 0 R t u t 2 + u 2 R 2 t u t 2 + u 2 R 2
27 26 abbidv R 0 R t u | u t 2 + u 2 R 2 = u | t u t 2 + u 2 R 2
28 resqcl R R 2
29 28 3ad2ant1 R 0 R t R 2
30 resqcl t t 2
31 30 3ad2ant3 R 0 R t t 2
32 29 31 resubcld R 0 R t R 2 t 2
33 32 adantr R 0 R t t R R 2 t 2
34 absresq t t 2 = t 2
35 34 3ad2ant3 R 0 R t t 2 = t 2
36 35 breq1d R 0 R t t 2 R 2 t 2 R 2
37 recn t t
38 37 abscld t t
39 38 3ad2ant3 R 0 R t t
40 simp1 R 0 R t R
41 37 absge0d t 0 t
42 41 3ad2ant3 R 0 R t 0 t
43 simp2 R 0 R t 0 R
44 39 40 42 43 le2sqd R 0 R t t R t 2 R 2
45 29 31 subge0d R 0 R t 0 R 2 t 2 t 2 R 2
46 36 44 45 3bitr4d R 0 R t t R 0 R 2 t 2
47 46 biimpa R 0 R t t R 0 R 2 t 2
48 33 47 resqrtcld R 0 R t t R R 2 t 2
49 48 renegcld R 0 R t t R R 2 t 2
50 49 rexrd R 0 R t t R R 2 t 2 *
51 48 rexrd R 0 R t t R R 2 t 2 *
52 iccval R 2 t 2 * R 2 t 2 * R 2 t 2 R 2 t 2 = u * | R 2 t 2 u u R 2 t 2
53 50 51 52 syl2anc R 0 R t t R R 2 t 2 R 2 t 2 = u * | R 2 t 2 u u R 2 t 2
54 iftrue t R if t R R 2 t 2 R 2 t 2 = R 2 t 2 R 2 t 2
55 54 adantl R 0 R t t R if t R R 2 t 2 R 2 t 2 = R 2 t 2 R 2 t 2
56 absresq u u 2 = u 2
57 32 recnd R 0 R t R 2 t 2
58 57 adantr R 0 R t t R R 2 t 2
59 58 sqsqrtd R 0 R t t R R 2 t 2 2 = R 2 t 2
60 56 59 breqan12rd R 0 R t t R u u 2 R 2 t 2 2 u 2 R 2 t 2
61 recn u u
62 61 abscld u u
63 62 adantl R 0 R t t R u u
64 48 adantr R 0 R t t R u R 2 t 2
65 61 absge0d u 0 u
66 65 adantl R 0 R t t R u 0 u
67 33 47 sqrtge0d R 0 R t t R 0 R 2 t 2
68 67 adantr R 0 R t t R u 0 R 2 t 2
69 63 64 66 68 le2sqd R 0 R t t R u u R 2 t 2 u 2 R 2 t 2 2
70 31 adantr R 0 R t u t 2
71 resqcl u u 2
72 71 adantl R 0 R t u u 2
73 29 adantr R 0 R t u R 2
74 70 72 73 leaddsub2d R 0 R t u t 2 + u 2 R 2 u 2 R 2 t 2
75 74 adantlr R 0 R t t R u t 2 + u 2 R 2 u 2 R 2 t 2
76 60 69 75 3bitr4rd R 0 R t t R u t 2 + u 2 R 2 u R 2 t 2
77 simpr R 0 R t t R u u
78 77 64 absled R 0 R t t R u u R 2 t 2 R 2 t 2 u u R 2 t 2
79 rexr u u *
80 79 adantl R 0 R t t R u u *
81 80 biantrurd R 0 R t t R u R 2 t 2 u u R 2 t 2 u * R 2 t 2 u u R 2 t 2
82 76 78 81 3bitrd R 0 R t t R u t 2 + u 2 R 2 u * R 2 t 2 u u R 2 t 2
83 82 pm5.32da R 0 R t t R u t 2 + u 2 R 2 u u * R 2 t 2 u u R 2 t 2
84 simprl R 0 R t t R u * R 2 t 2 u u R 2 t 2 u *
85 48 adantr R 0 R t t R u * R 2 t 2 u u R 2 t 2 R 2 t 2
86 mnfxr −∞ *
87 86 a1i R 0 R t t R u * R 2 t 2 u u R 2 t 2 −∞ *
88 49 adantr R 0 R t t R u * R 2 t 2 u u R 2 t 2 R 2 t 2
89 88 rexrd R 0 R t t R u * R 2 t 2 u u R 2 t 2 R 2 t 2 *
90 49 mnfltd R 0 R t t R −∞ < R 2 t 2
91 90 adantr R 0 R t t R u * R 2 t 2 u u R 2 t 2 −∞ < R 2 t 2
92 simprrl R 0 R t t R u * R 2 t 2 u u R 2 t 2 R 2 t 2 u
93 87 89 84 91 92 xrltletrd R 0 R t t R u * R 2 t 2 u u R 2 t 2 −∞ < u
94 simprrr R 0 R t t R u * R 2 t 2 u u R 2 t 2 u R 2 t 2
95 xrre u * R 2 t 2 −∞ < u u R 2 t 2 u
96 84 85 93 94 95 syl22anc R 0 R t t R u * R 2 t 2 u u R 2 t 2 u
97 96 ex R 0 R t t R u * R 2 t 2 u u R 2 t 2 u
98 97 pm4.71rd R 0 R t t R u * R 2 t 2 u u R 2 t 2 u u * R 2 t 2 u u R 2 t 2
99 83 98 bitr4d R 0 R t t R u t 2 + u 2 R 2 u * R 2 t 2 u u R 2 t 2
100 99 abbidv R 0 R t t R u | u t 2 + u 2 R 2 = u | u * R 2 t 2 u u R 2 t 2
101 df-rab u * | R 2 t 2 u u R 2 t 2 = u | u * R 2 t 2 u u R 2 t 2
102 100 101 eqtr4di R 0 R t t R u | u t 2 + u 2 R 2 = u * | R 2 t 2 u u R 2 t 2
103 53 55 102 3eqtr4rd R 0 R t t R u | u t 2 + u 2 R 2 = if t R R 2 t 2 R 2 t 2
104 40 39 ltnled R 0 R t R < t ¬ t R
105 104 biimprd R 0 R t ¬ t R R < t
106 105 imdistani R 0 R t ¬ t R R 0 R t R < t
107 df-rab u | t 2 + u 2 R 2 = u | u t 2 + u 2 R 2
108 29 3ad2ant1 R 0 R t R < t u R 2
109 31 3ad2ant1 R 0 R t R < t u t 2
110 71 3ad2ant3 R 0 R t R < t u u 2
111 109 110 readdcld R 0 R t R < t u t 2 + u 2
112 40 39 43 42 lt2sqd R 0 R t R < t R 2 < t 2
113 35 breq2d R 0 R t R 2 < t 2 R 2 < t 2
114 112 113 bitrd R 0 R t R < t R 2 < t 2
115 114 biimpa R 0 R t R < t R 2 < t 2
116 115 3adant3 R 0 R t R < t u R 2 < t 2
117 sqge0 u 0 u 2
118 117 3ad2ant3 R 0 R t R < t u 0 u 2
119 109 110 addge01d R 0 R t R < t u 0 u 2 t 2 t 2 + u 2
120 118 119 mpbid R 0 R t R < t u t 2 t 2 + u 2
121 108 109 111 116 120 ltletrd R 0 R t R < t u R 2 < t 2 + u 2
122 108 111 ltnled R 0 R t R < t u R 2 < t 2 + u 2 ¬ t 2 + u 2 R 2
123 121 122 mpbid R 0 R t R < t u ¬ t 2 + u 2 R 2
124 123 3expa R 0 R t R < t u ¬ t 2 + u 2 R 2
125 124 ralrimiva R 0 R t R < t u ¬ t 2 + u 2 R 2
126 rabeq0 u | t 2 + u 2 R 2 = u ¬ t 2 + u 2 R 2
127 125 126 sylibr R 0 R t R < t u | t 2 + u 2 R 2 =
128 107 127 eqtr3id R 0 R t R < t u | u t 2 + u 2 R 2 =
129 106 128 syl R 0 R t ¬ t R u | u t 2 + u 2 R 2 =
130 iffalse ¬ t R if t R R 2 t 2 R 2 t 2 =
131 130 adantl R 0 R t ¬ t R if t R R 2 t 2 R 2 t 2 =
132 129 131 eqtr4d R 0 R t ¬ t R u | u t 2 + u 2 R 2 = if t R R 2 t 2 R 2 t 2
133 103 132 pm2.61dan R 0 R t u | u t 2 + u 2 R 2 = if t R R 2 t 2 R 2 t 2
134 27 133 eqtr3d R 0 R t u | t u t 2 + u 2 R 2 = if t R R 2 t 2 R 2 t 2
135 24 134 eqtrid R 0 R t S t = if t R R 2 t 2 R 2 t 2