Metamath Proof Explorer


Theorem areacirclem5

Description: Finding the cross-section of a circle. (Contributed by Brendan Leahy, 31-Aug-2017) (Revised by Brendan Leahy, 22-Sep-2017) (Revised by Brendan Leahy, 11-Jul-2018)

Ref Expression
Hypothesis areacirc.1 S=xy|xyx2+y2R2
Assertion areacirclem5 R0RtSt=iftRR2t2R2t2

Proof

Step Hyp Ref Expression
1 areacirc.1 S=xy|xyx2+y2R2
2 1 imaeq1i St=xy|xyx2+y2R2t
3 vex tV
4 imasng tVxy|xyx2+y2R2t=u|txy|xyx2+y2R2u
5 3 4 ax-mp xy|xyx2+y2R2t=u|txy|xyx2+y2R2u
6 df-br txy|xyx2+y2R2utuxy|xyx2+y2R2
7 vex uV
8 eleq1w x=txt
9 8 anbi1d x=txyty
10 oveq1 x=tx2=t2
11 10 oveq1d x=tx2+y2=t2+y2
12 11 breq1d x=tx2+y2R2t2+y2R2
13 9 12 anbi12d x=txyx2+y2R2tyt2+y2R2
14 eleq1w y=uyu
15 14 anbi2d y=utytu
16 oveq1 y=uy2=u2
17 16 oveq2d y=ut2+y2=t2+u2
18 17 breq1d y=ut2+y2R2t2+u2R2
19 15 18 anbi12d y=utyt2+y2R2tut2+u2R2
20 3 7 13 19 opelopab tuxy|xyx2+y2R2tut2+u2R2
21 anass tut2+u2R2tut2+u2R2
22 6 20 21 3bitri txy|xyx2+y2R2utut2+u2R2
23 22 abbii u|txy|xyx2+y2R2u=u|tut2+u2R2
24 2 5 23 3eqtri St=u|tut2+u2R2
25 simp3 R0Rtt
26 25 biantrurd R0Rtut2+u2R2tut2+u2R2
27 26 abbidv R0Rtu|ut2+u2R2=u|tut2+u2R2
28 resqcl RR2
29 28 3ad2ant1 R0RtR2
30 resqcl tt2
31 30 3ad2ant3 R0Rtt2
32 29 31 resubcld R0RtR2t2
33 32 adantr R0RttRR2t2
34 absresq tt2=t2
35 34 3ad2ant3 R0Rtt2=t2
36 35 breq1d R0Rtt2R2t2R2
37 recn tt
38 37 abscld tt
39 38 3ad2ant3 R0Rtt
40 simp1 R0RtR
41 37 absge0d t0t
42 41 3ad2ant3 R0Rt0t
43 simp2 R0Rt0R
44 39 40 42 43 le2sqd R0RttRt2R2
45 29 31 subge0d R0Rt0R2t2t2R2
46 36 44 45 3bitr4d R0RttR0R2t2
47 46 biimpa R0RttR0R2t2
48 33 47 resqrtcld R0RttRR2t2
49 48 renegcld R0RttRR2t2
50 49 rexrd R0RttRR2t2*
51 48 rexrd R0RttRR2t2*
52 iccval R2t2*R2t2*R2t2R2t2=u*|R2t2uuR2t2
53 50 51 52 syl2anc R0RttRR2t2R2t2=u*|R2t2uuR2t2
54 iftrue tRiftRR2t2R2t2=R2t2R2t2
55 54 adantl R0RttRiftRR2t2R2t2=R2t2R2t2
56 absresq uu2=u2
57 32 recnd R0RtR2t2
58 57 adantr R0RttRR2t2
59 58 sqsqrtd R0RttRR2t22=R2t2
60 56 59 breqan12rd R0RttRuu2R2t22u2R2t2
61 recn uu
62 61 abscld uu
63 62 adantl R0RttRuu
64 48 adantr R0RttRuR2t2
65 61 absge0d u0u
66 65 adantl R0RttRu0u
67 33 47 sqrtge0d R0RttR0R2t2
68 67 adantr R0RttRu0R2t2
69 63 64 66 68 le2sqd R0RttRuuR2t2u2R2t22
70 31 adantr R0Rtut2
71 resqcl uu2
72 71 adantl R0Rtuu2
73 29 adantr R0RtuR2
74 70 72 73 leaddsub2d R0Rtut2+u2R2u2R2t2
75 74 adantlr R0RttRut2+u2R2u2R2t2
76 60 69 75 3bitr4rd R0RttRut2+u2R2uR2t2
77 simpr R0RttRuu
78 77 64 absled R0RttRuuR2t2R2t2uuR2t2
79 rexr uu*
80 79 adantl R0RttRuu*
81 80 biantrurd R0RttRuR2t2uuR2t2u*R2t2uuR2t2
82 76 78 81 3bitrd R0RttRut2+u2R2u*R2t2uuR2t2
83 82 pm5.32da R0RttRut2+u2R2uu*R2t2uuR2t2
84 simprl R0RttRu*R2t2uuR2t2u*
85 48 adantr R0RttRu*R2t2uuR2t2R2t2
86 mnfxr −∞*
87 86 a1i R0RttRu*R2t2uuR2t2−∞*
88 49 adantr R0RttRu*R2t2uuR2t2R2t2
89 88 rexrd R0RttRu*R2t2uuR2t2R2t2*
90 49 mnfltd R0RttR−∞<R2t2
91 90 adantr R0RttRu*R2t2uuR2t2−∞<R2t2
92 simprrl R0RttRu*R2t2uuR2t2R2t2u
93 87 89 84 91 92 xrltletrd R0RttRu*R2t2uuR2t2−∞<u
94 simprrr R0RttRu*R2t2uuR2t2uR2t2
95 xrre u*R2t2−∞<uuR2t2u
96 84 85 93 94 95 syl22anc R0RttRu*R2t2uuR2t2u
97 96 ex R0RttRu*R2t2uuR2t2u
98 97 pm4.71rd R0RttRu*R2t2uuR2t2uu*R2t2uuR2t2
99 83 98 bitr4d R0RttRut2+u2R2u*R2t2uuR2t2
100 99 abbidv R0RttRu|ut2+u2R2=u|u*R2t2uuR2t2
101 df-rab u*|R2t2uuR2t2=u|u*R2t2uuR2t2
102 100 101 eqtr4di R0RttRu|ut2+u2R2=u*|R2t2uuR2t2
103 53 55 102 3eqtr4rd R0RttRu|ut2+u2R2=iftRR2t2R2t2
104 40 39 ltnled R0RtR<t¬tR
105 104 biimprd R0Rt¬tRR<t
106 105 imdistani R0Rt¬tRR0RtR<t
107 df-rab u|t2+u2R2=u|ut2+u2R2
108 29 3ad2ant1 R0RtR<tuR2
109 31 3ad2ant1 R0RtR<tut2
110 71 3ad2ant3 R0RtR<tuu2
111 109 110 readdcld R0RtR<tut2+u2
112 40 39 43 42 lt2sqd R0RtR<tR2<t2
113 35 breq2d R0RtR2<t2R2<t2
114 112 113 bitrd R0RtR<tR2<t2
115 114 biimpa R0RtR<tR2<t2
116 115 3adant3 R0RtR<tuR2<t2
117 sqge0 u0u2
118 117 3ad2ant3 R0RtR<tu0u2
119 109 110 addge01d R0RtR<tu0u2t2t2+u2
120 118 119 mpbid R0RtR<tut2t2+u2
121 108 109 111 116 120 ltletrd R0RtR<tuR2<t2+u2
122 108 111 ltnled R0RtR<tuR2<t2+u2¬t2+u2R2
123 121 122 mpbid R0RtR<tu¬t2+u2R2
124 123 3expa R0RtR<tu¬t2+u2R2
125 124 ralrimiva R0RtR<tu¬t2+u2R2
126 rabeq0 u|t2+u2R2=u¬t2+u2R2
127 125 126 sylibr R0RtR<tu|t2+u2R2=
128 107 127 eqtr3id R0RtR<tu|ut2+u2R2=
129 106 128 syl R0Rt¬tRu|ut2+u2R2=
130 iffalse ¬tRiftRR2t2R2t2=
131 130 adantl R0Rt¬tRiftRR2t2R2t2=
132 129 131 eqtr4d R0Rt¬tRu|ut2+u2R2=iftRR2t2R2t2
133 103 132 pm2.61dan R0Rtu|ut2+u2R2=iftRR2t2R2t2
134 27 133 eqtr3d R0Rtu|tut2+u2R2=iftRR2t2R2t2
135 24 134 eqtrid R0RtSt=iftRR2t2R2t2