Metamath Proof Explorer


Theorem asinsin

Description: The arcsine function composed with sin is equal to the identity. This plus sinasin allow to view sin and arcsin as inverse operations to each other. For ease of use, we have not defined precisely the correct domain of correctness of this identity; in addition to the main region described here it is also true forsome points on the branch cuts, namely when A = (pi / 2 ) - i y for nonnegative real y and also symmetrically at A =i y - ( pi / 2 ) . In particular, when restricted to reals this identity extends to the closed interval [ -u (pi / 2 ) , ( pi / 2 ) ] , not just the open interval (see reasinsin ). (Contributed by Mario Carneiro, 2-Apr-2015)

Ref Expression
Assertion asinsin AAπ2π2arcsinsinA=A

Proof

Step Hyp Ref Expression
1 sincl AsinA
2 1 adantr AAπ2π2sinA
3 asinval sinAarcsinsinA=ilogisinA+1sinA2
4 2 3 syl AAπ2π2arcsinsinA=ilogisinA+1sinA2
5 ax-icn i
6 mulcl isinAisinA
7 5 2 6 sylancr AAπ2π2isinA
8 simpl AAπ2π2A
9 mulcl iAiA
10 5 8 9 sylancr AAπ2π2iA
11 efcl iAeiA
12 10 11 syl AAπ2π2eiA
13 7 12 pncan3d AAπ2π2isinA+eiA-isinA=eiA
14 12 7 subcld AAπ2π2eiAisinA
15 ax-1cn 1
16 2 sqcld AAπ2π2sinA2
17 subcl 1sinA21sinA2
18 15 16 17 sylancr AAπ2π21sinA2
19 binom2sub eiAisinAeiAisinA2=eiA2-2eiAisinA+isinA2
20 12 7 19 syl2anc AAπ2π2eiAisinA2=eiA2-2eiAisinA+isinA2
21 12 sqvald AAπ2π2eiA2=eiAeiA
22 2cn 2
23 22 a1i AAπ2π22
24 23 12 7 mul12d AAπ2π22eiAisinA=eiA2isinA
25 21 24 oveq12d AAπ2π2eiA22eiAisinA=eiAeiAeiA2isinA
26 coscl AcosA
27 26 adantr AAπ2π2cosA
28 subsq cosAisinAcosA2isinA2=cosA+isinAcosAisinA
29 27 7 28 syl2anc AAπ2π2cosA2isinA2=cosA+isinAcosAisinA
30 sqmul isinAisinA2=i2sinA2
31 5 2 30 sylancr AAπ2π2isinA2=i2sinA2
32 i2 i2=1
33 32 oveq1i i2sinA2=-1sinA2
34 16 mulm1d AAπ2π2-1sinA2=sinA2
35 33 34 eqtrid AAπ2π2i2sinA2=sinA2
36 31 35 eqtrd AAπ2π2isinA2=sinA2
37 36 oveq2d AAπ2π2cosA2isinA2=cosA2sinA2
38 27 sqcld AAπ2π2cosA2
39 38 16 subnegd AAπ2π2cosA2sinA2=cosA2+sinA2
40 38 16 addcomd AAπ2π2cosA2+sinA2=sinA2+cosA2
41 37 39 40 3eqtrd AAπ2π2cosA2isinA2=sinA2+cosA2
42 efival AeiA=cosA+isinA
43 42 adantr AAπ2π2eiA=cosA+isinA
44 7 2timesd AAπ2π22isinA=isinA+isinA
45 43 44 oveq12d AAπ2π2eiA2isinA=cosA+isinA-isinA+isinA
46 27 7 7 pnpcan2d AAπ2π2cosA+isinA-isinA+isinA=cosAisinA
47 45 46 eqtrd AAπ2π2eiA2isinA=cosAisinA
48 43 47 oveq12d AAπ2π2eiAeiA2isinA=cosA+isinAcosAisinA
49 mulcl 2isinA2isinA
50 22 7 49 sylancr AAπ2π22isinA
51 12 12 50 subdid AAπ2π2eiAeiA2isinA=eiAeiAeiA2isinA
52 48 51 eqtr3d AAπ2π2cosA+isinAcosAisinA=eiAeiAeiA2isinA
53 29 41 52 3eqtr3d AAπ2π2sinA2+cosA2=eiAeiAeiA2isinA
54 sincossq AsinA2+cosA2=1
55 54 adantr AAπ2π2sinA2+cosA2=1
56 25 53 55 3eqtr2d AAπ2π2eiA22eiAisinA=1
57 56 36 oveq12d AAπ2π2eiA2-2eiAisinA+isinA2=1+sinA2
58 negsub 1sinA21+sinA2=1sinA2
59 15 16 58 sylancr AAπ2π21+sinA2=1sinA2
60 20 57 59 3eqtrd AAπ2π2eiAisinA2=1sinA2
61 halfre 12
62 61 a1i AAπ2π212
63 negicn i
64 mulcl iAiA
65 63 8 64 sylancr AAπ2π2iA
66 efcl iAeiA
67 65 66 syl AAπ2π2eiA
68 12 67 addcld AAπ2π2eiA+eiA
69 68 recld AAπ2π2eiA+eiA
70 halfgt0 0<12
71 70 a1i AAπ2π20<12
72 12 recld AAπ2π2eiA
73 67 recld AAπ2π2eiA
74 asinsinlem AAπ2π20<eiA
75 negcl AA
76 75 adantr AAπ2π2A
77 reneg AA=A
78 77 adantr AAπ2π2A=A
79 halfpire π2
80 79 renegcli π2
81 recl AA
82 iooneg π2π2AAπ2π2Aπ2π2
83 80 79 81 82 mp3an12i AAπ2π2Aπ2π2
84 83 biimpa AAπ2π2Aπ2π2
85 79 recni π2
86 85 negnegi π2=π2
87 86 oveq2i π2π2=π2π2
88 84 87 eleqtrdi AAπ2π2Aπ2π2
89 78 88 eqeltrd AAπ2π2Aπ2π2
90 asinsinlem AAπ2π20<eiA
91 76 89 90 syl2anc AAπ2π20<eiA
92 mulneg12 iAiA=iA
93 5 8 92 sylancr AAπ2π2iA=iA
94 93 fveq2d AAπ2π2eiA=eiA
95 94 fveq2d AAπ2π2eiA=eiA
96 91 95 breqtrrd AAπ2π20<eiA
97 72 73 74 96 addgt0d AAπ2π20<eiA+eiA
98 12 67 readdd AAπ2π2eiA+eiA=eiA+eiA
99 97 98 breqtrrd AAπ2π20<eiA+eiA
100 62 69 71 99 mulgt0d AAπ2π20<12eiA+eiA
101 cosval AcosA=eiA+eiA2
102 101 adantr AAπ2π2cosA=eiA+eiA2
103 2ne0 20
104 103 a1i AAπ2π220
105 68 23 104 divrec2d AAπ2π2eiA+eiA2=12eiA+eiA
106 102 105 eqtrd AAπ2π2cosA=12eiA+eiA
107 106 fveq2d AAπ2π2cosA=12eiA+eiA
108 remul2 12eiA+eiA12eiA+eiA=12eiA+eiA
109 61 68 108 sylancr AAπ2π212eiA+eiA=12eiA+eiA
110 107 109 eqtrd AAπ2π2cosA=12eiA+eiA
111 100 110 breqtrrd AAπ2π20<cosA
112 27 7 43 mvrraddd AAπ2π2eiAisinA=cosA
113 112 fveq2d AAπ2π2eiAisinA=cosA
114 111 113 breqtrrd AAπ2π20<eiAisinA
115 14 18 60 114 eqsqrt2d AAπ2π2eiAisinA=1sinA2
116 115 oveq2d AAπ2π2isinA+eiA-isinA=isinA+1sinA2
117 13 116 eqtr3d AAπ2π2eiA=isinA+1sinA2
118 117 fveq2d AAπ2π2logeiA=logisinA+1sinA2
119 pire π
120 119 renegcli π
121 120 a1i AAπ2π2π
122 80 a1i AAπ2π2π2
123 elioore Aπ2π2A
124 123 adantl AAπ2π2A
125 pirp π+
126 rphalflt π+π2<π
127 125 126 ax-mp π2<π
128 79 119 ltnegi π2<ππ<π2
129 127 128 mpbi π<π2
130 129 a1i AAπ2π2π<π2
131 eliooord Aπ2π2π2<AA<π2
132 131 adantl AAπ2π2π2<AA<π2
133 132 simpld AAπ2π2π2<A
134 121 122 124 130 133 lttrd AAπ2π2π<A
135 imre iAiA=iiA
136 10 135 syl AAπ2π2iA=iiA
137 5 5 mulneg1i ii=ii
138 ixi ii=1
139 138 negeqi ii=-1
140 15 negnegi -1=1
141 137 139 140 3eqtri ii=1
142 141 oveq1i iiA=1A
143 63 a1i AAπ2π2i
144 5 a1i AAπ2π2i
145 143 144 8 mulassd AAπ2π2iiA=iiA
146 mullid A1A=A
147 146 adantr AAπ2π21A=A
148 142 145 147 3eqtr3a AAπ2π2iiA=A
149 148 fveq2d AAπ2π2iiA=A
150 136 149 eqtrd AAπ2π2iA=A
151 134 150 breqtrrd AAπ2π2π<iA
152 119 a1i AAπ2π2π
153 79 a1i AAπ2π2π2
154 132 simprd AAπ2π2A<π2
155 127 a1i AAπ2π2π2<π
156 124 153 152 154 155 lttrd AAπ2π2A<π
157 124 152 156 ltled AAπ2π2Aπ
158 150 157 eqbrtrd AAπ2π2iAπ
159 ellogrn iAranlogiAπ<iAiAπ
160 10 151 158 159 syl3anbrc AAπ2π2iAranlog
161 logef iAranloglogeiA=iA
162 160 161 syl AAπ2π2logeiA=iA
163 118 162 eqtr3d AAπ2π2logisinA+1sinA2=iA
164 163 oveq2d AAπ2π2ilogisinA+1sinA2=iiA
165 4 164 148 3eqtrd AAπ2π2arcsinsinA=A